数学建模的实际应用范例(12篇)

来源:其他

数学建模的实际应用范文篇1

关键词:建模思想;高等数学;必要性;可行性

一、高等数学的教学目标

1.1高等数学的总体目标

高等数学课程在高等学校非数学专业的教学计划中是一门重要的基础理论课。它是为培养适应我国社会主义现代化建设需要的高质量专门人才服务的,在培养高素质科学技术人才中具有其独特的、不可替代的作用。通过对这门课程的学习,为今后学习其它基础课及多数专业课打下必要的数学基础,为这些课程提供所必需的数学概念、理论、方法和运算技能。作为未来的工程技术或研究人员,也需要通过对这门课程的学习,获得必不可少的数学方面的修养和素质。

通过本课程的学习,要使学生获得:1.函数、极限、连续;2.一元函数微分学及应用;3.一元函数积分学及应用;4.空间解析几何与向量代数;5.多元函数微分学及应用;6.多元函数积分学及应用;7.无穷级数;8.微分方程等方面的基本知识(基本概念、基本理论、基本方法)和基本运算技能,为今后学习后续课程及进一步获得数学知识奠定必要的连续量方面的数学基础。

在传授知识的同时,要通过各个教学环节培养学生运算能力、空间想象能力、抽象思维能力和逻辑推理能力,培养学生具有综合运用所学知识去分析问题和解决问题的能力以及较强的自主学习能力,逐步培养学生的创新精神和创新能力。

1.2数学建模教学的背景与状况分析

美国国家科学研究会在一份提交给美国政府的研究报告中也明确指出:“在经济竞争中数学科学是必不可少的,数学科学是一种关键性的、普遍的、能够实行的技术。”21世纪是工程数学技术的时代。与我们所处的时代相适应,理工科数学教育应当包括如下三个方面的内容:基本知识的传授,自学能力锻炼,应用数学知识解决实际问题能力的培养。然而,旧的理工科数学体系存在一个很大弊端:大多数学生毕业后不懂得如何运用学过的数学知识去解决实际问题,甚至有人因此认为学数学无用。形成时代要求培养掌握和运用技术的新型人才与现行理工科数学教育脱离实际的矛盾。钱学森同志1989年曾就数学教育改革问题指出:“理工科大学的数学课是不是要改造一番”,以“应付现在的实际”。改革理工科数学内容需要找到一个突破口。

二、在我校高职高专高等数学教学中融入建模思想的必要性与可行性

2.1建模思想融入高等数学教学的必要性

我们知道微积分的发明起源于物理学与几何学等实际问题的推动,并且微积分也极大地推动了科学的进步,直到今天,微积分仍在各个领域发挥着重要作用。但是今天的高等数学教学往往是过分强调理论的系统性,结构的严密性,而轻视了基本概念的实际背景,基本定理、基本理论的物理、几何等实际意义的解释,割裂了微积分与外部世界的密切联系,没能充分显示微积分的巨大生命力与应用价值,使学生学了一大堆的定义、定理和公式,却不知道对实际问题有什么用。而数学建模是通过调查、收集数据、资料,观察和研究其固有的特征和内在的规律,抓住问题的主要矛盾,运用数学的思想、方法和手段对实际问题进行抽象和合理假设、创造性地建立起反映实际问题的数量关系,即数学模型,然后运用数学方法辅以计算机等设备对模型加以求解,再返回到实际中去解释、分析实际问题,并根据实际问题的反馈结果对数学模型进行验证、修改、并逐步完善,为人们解决实际问题提供科学依据和手段。因此数学模型是数学与客观实际问题联系起来的纽带,是沟通现实世界与数学世界的桥梁,是解决实际问题的强力工具。然而在实践中能够直接运用数学知识去解决实际问题的情况还是很少的,而且对于如何使用数学语言来描述所面临的实际问题也往往不是轻而易举的,而使用数学知识解决实际问题的第一步就是要从实际问题的看起来杂乱无章的现象中抽象出恰当的数学关系,即数学模型,数学模型的组建过程不仅要进行演绎推理而且还要对复杂的现实情况进行归纳、总结和提炼,这是一个归纳、总结和演绎推理相结合的过程。这就要求我们必须改变传统数学教学只重视推理的教学模式,突出对数学结论的理解与应用,精简一些深奥的数学理论,简化复杂的抽象推理,强调对数学结果的说明、直观解释和应用举例等。逐步训练学生不仅掌握了数学知识而且学会“用数学”,学会用数学的知识与方法解决实际问题,因此,在高等数学教学中渗透建模思想的训练是十分必要的。

2.2建模思想融入高等数学教学的可行性

我校的高职高专教育是一种职业技术教育,其目标是培养能够解决生产中实际问题的人才,这一点与数学建模竞赛活动“提高学生建立数学模型和运用计算机技术解决实际问题的综合能力”的目的是一致的。首先,计算机高职的学生对一些实际生产问题的流程要比传统大专和本科的学生更加清楚.而数学建模的题目通常是与一些实际生产问题的流程结合在一起的,只有对这些实际生产问题的流程有了比较具体的了解后,才能够比较好地完成题目的解答,从这一点来看,计算机高职的学生更有优势。其次,由于计算机高职的学生要掌握一些理论知识(如微积分初步、线性代数、概率初步等),并具备一定的运用所掌握的知识解决实际问题的能力,使得将数学建模引入计算机高职数学教学成为可能。

数学建模的实际应用范文篇2

一、建模在小学具有一定的“阶段性”

数学建模是从学生已有的生活经验出发,让学生亲生经历将实际问题抽象成数学模型并进行解释与运用的过程,进而使学生获得对数学的理解的同时,初步形成模型思想,提高学习数学的兴趣和应用意识。在建模用模中学生需要有“经历——体验——感悟”的过程。

二、基于模型思想开展小学数学教学

用数学建模的思想来指导着数学教学,不同的年级、内容、学习对象应该体现出一定的差异,但也存在着很大的关联性。就教学实施的一般程序来看,可以归结到三个字:“磨”、“模”、“魔”。

所谓“磨”,即“琢磨”。也就是教师首先要反复琢磨每一具体的教学内容中隐藏着怎样的“模”?需要帮助学生建立怎样的“模”?如何来建“模”?在多大的程度上来建“模”?所建的“模”和建模的过程对于儿童的数学学习具有怎样的影响?……在基于建模思想的数学教学中,这些问题都是一些本原性的问题。

所谓“模”,即“建模”。也就是在教学中要帮助学生不断经历将现实问题抽象成数学模型并进行解释和运用。“建模”的过程,实际上就是“数学化”的过程。

所谓“魔”,即“着魔”,也就是学生对“模型”在数学学习中的运用有着深切的体验和感悟,并对之产生好奇,从而在数学学习中能主动地构想模型、建立模型、运用模型。

(1)结合正常的课堂教学,在部分环节上“切入”应用建模的内容。

(2)以数学应用和数学建模为主题的课外活动。

(3)改编教材习题。使建模用模成为一种自觉行为。

三、数学建模用模应注意的问题

(1)在数学建模中,问题是关键。数学建模的问题应是多样的,应来自于学生的日常生活、现实世界、其他学科等多方面。

(2)通过数学建模,学生将了解和经历解决实际问题的全过程,体验数学与日常生活及其他学科的联系,感受数学的实用价值,增强应用意识,提高实践能力。

(3)每一个学生都可以根据自己的生活经验发现并提出问题,对同样的问题,可以发挥自己的特长和个性,从不同的角度、层次探索解决的方法,从而获得综合运用知识和方法解决实际问题的经验。

(4)学生在数学建模中应采取各种合作方式解决问题,养成与人交流的习惯,并获得良好的情感体验。

(5)数学建模活动应将课内与课外有机结合起来,把数学建模活动与综合实践活动有机地结合起来。

数学建模的实际应用范文篇3

[关键词]高等学校数学应用能力培养

我国数学家华罗庚曾这样描述数学应用的普遍性:“宇宙之大,离子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。”

迄今为止,数学在自然科学、社会科学、经济学等领域的应用已得到广泛的承认。数学在各个方面的作用日益扩大,尤其是计算机出现后,数学在各个领域的五彩缤纷的应用完全取决于算法设计,没有数据处理、计算方法、算法分析这些应用数学的分支,就不会有计算机的应用。所以说数学已“无处不在”。

当前世界各国把数学教育的重点放在实际问题的解决上,也就是用数学理论和方法解决实际问题的能力。其实质是数学教育中要加强应用数学解决实际问题的能力。

在高等教育中,如何培养学生应用数学的意识提高学生的数学素质,是一个非常重要的问题。由于数学理论的抽象性,系统性较强,很难将一个概念,一个定理进行实际应用,

我认为在高等学校数学的教学中,应从以下几个方面来提高学生应用数学的能力。

一、重视数学知识的产生过程

教材上的数学知识是前人发现的,对学生而言是新知识,而学生的学习是一种“再发现”.这种新知识的再发现是利用已有知识和数学思想方法的结果,就是一种应用.

这种应用的培养要求教师在教学中应注重创造教学情境,激发学生的学习兴趣和探索精神.调动学生的学习积极性和主动性.激发学生对新知识的积极探索的兴趣.

教师应把数学教学当作数学活动的教学,教学活动不仅要反映结果,而且要反映得到这些结果的思维活动过程.要特别注意使学生逐步学会怎样从实例和已有知识中发现和提出数学问题,怎样进行分析,综合,抽象和概括,怎样进行判断推理和解决问题,使学生的应用能力逐步得到提高.

二、适当增加数学实验课

数学实验课是从实际问题出发,借助计算机,通过学生亲自设计,动手体验解决问题的过程,从实验中去学习,探索发现数学的规律.实验可以用Mathematica来实现,也可以用其它的数学软件或自己编程.

例如,要计算π的近似值,可以利用数值积分法.

因为,所以要计算π的近似值,只要计算该积分即可.

一般地,对于在闭区间[a,b]上的连续函数f(x),要计算定积分,就是计算曲线y=f(x)与直线y=0,x=a,x=b所围成的曲边梯形的面积S.为此,用一组平行与的直线:

x=x1,x=x2…x=xn-1,(a<x1<x2<…x=xn-1<b)

将曲边梯形分成n个小的曲边梯形,总面积等于这n个小曲边梯形的面积的和。

如果n很大,使每个小曲边梯形的宽度都很窄,则可将它上方的边界近似地看作抛物线,那么,就可以得到辛普生公式:

然后让n逐渐增大,利用辛普生公式可以算出的近似值。

以上的分析过程可以看出,用到了转换思想,数形结合思想,逼近思想,也用到了定积分知识及面积公式,学生不但学习了怎样求面积的值的方法,也学会了如何应用数学思想方法和已有的数学知识来发现数学,探索规律。

虽然数学实验课是在计算机的帮助下学习数学,但仍然需要一定的数学知识和数学思想方法作为前提.也就是说在实验过程中,学生学会用数学知识和数学思想方法解决问题,提高数学能力.

三、数学建模能力的培养

数学建模是应用数学理论和计算机解决实际问题的重要手段和桥梁。掌握了数学知识只是应用数学解决实际问题的必要条件,所以使用数学解决实际问题的技术的培养也就是数学建模能力的培养是非常重要和必须的。

数学建模是以实际问题为核心,将多门学科,多种技能结和起来.以解决实际问题的逻辑顺序为主线而进行的课题.数学建模是根据实际需要对实际问题建立数学模型的过程。这里所说的数学是一种广义的数学,它包括经典数学之外的统计学、运筹学以及计算机学等。

数学建模大致可分为五个阶段:

1.熟悉实际问题的背景。

2.分析-简化。

通过认真分析,识别并列出与问题有关的因素;找出主要因素,剔出次要因素。通过假设把所研究的问题进行简化,明确模型中需要考虑的因素以及它们在问题中的作用。以变量和参数的形式表示这些因素。

3.建立数学模型

用数学知识和数学上的技能技巧来描述问题中变量之间的关系,通常它可以用数学表达式来描述。比如:比例关系、线性与非线性关系、经验关系、输入输出关系、平衡关系、牛顿运动定律、微分或差分方程、矩阵关系式、概率、统计分布率等,从而得到所研究问题的数学模型。

4.求解估计参数

求解所建立的数学模型并使用观测数据或与实际问题有关的背景知识对模型中的参数给出估计值。

5.检验-修改-完善

运行所得到的数学模型,解释模型的结果或把模型的运行结果与实际观测进行比较.如果模型结果的解释与实际情况相和或结果与实际观测基本一致,就表明模型经检验是符合实际的.可以将它用于对实际问题进行进一步的分析讨论.如果模型的结果很难与实际相相和或与实际观测不一致,就表明这个模型与实际问题是不符的,不能将它直接应用与实际问题.这时需要进一步修改和完善.

从以上的过程看,它为学生主动学习数学知识,提高数学应用能力创造了一个类似于创造发明的积极情境.

在数学建模中,学生除了必要的数学知识外,关键是要具备把实际问题归纳成为数学问题的的能力.因此,数学建模常采用问题-知识-问题的教学模式.教师根据实际问题启发式介绍一些相关的数学知识的概念和方法,更精确的知识主要靠学生自己去学.问题的解决主要靠学生围绕需要解决的实际问题,广泛查阅与问题相关的文献资料,通过学生之间的讨论,利用尽可能技能技巧完成问题的求解.从文献资料的获得,假设的建立,模型的构成,问题的分析,到相互比较得出结论乃至评价,全是有学生在实际问题吸引下所激发的兴趣的基础上,通过主动学习而创造性的完成.因此,数学建模对培养学生的数学应用意识和数学的应用能力十分重要.

文章由北京建筑工程学院教研项目:“促进应用型人才培养的高等数学课程教学内容与方法的改革与实践”支持;项目编号:Y10-22.

[参考文献]

[1]韩正之《通向完美的桥梁-数学方法论》上海交通大学出版社2006年4月

[2]贾晓峰《微积分与数学模型》高等教育出版社1999年

数学建模的实际应用范文篇4

【关键词】数学建模经济数学教学改革

随着我国经管学科的快速发展,数学作为经管专业的基础课受到越来越广泛的关注和重视,经管类专业对经济数学的要求也越来越高。但我国经济数学教育开展的时间还不长,过去的教学过于追求体系的完整、理论的完美和逻辑的严谨,忘记了数学“从何而来,又向何而去”的问题。同时,计算机正迅速渗入我们的生活,然而当前绝大多数数学教师对计算机的要求并不迫切,数学教育似乎是信息时代与世隔绝的“世外桃源”。尽管专家对计算机辅助教学报以很大的期望,但至今计算机在数学教改中远没有发挥应有的作用。因此,大学经济数学教学的改革势在必行,把数学建模的思想融入到经济数学的教学中,不仅能激发学生学习经济数学的兴趣,帮助学生理解和掌握教材中的定义、定理,而且可以培养学生应用经济数学的意识和提高其解决实际问题的能力。

一、数学建模及经济数学教学过程中存在的问题

数学建模就是在实验、观察和分析的基础上,对实际问题的主要方面做出合理的简化与假设;确定变量和参数;应用数学的语言和方法将实际问题形成一个明确的数学问题;用数学理论、方法对该问题求解析解或用数值计算方法、计算机编程求近似解;检验求解的结果是否符合实际,这样的过程的多次反复进行直到较好地解决问题,这就是数学建模的全过程。实际上,数学建模就是通过有目的地搜集数据资料,研究其固有的特征和内在规律,抓住问题的主要矛盾,经过抽象简化,建立起反映实际问题的数量关系的数学模型,然后运用数学的方法与技巧去分析和解决实际问题。数学建模是联系数学与实际问题的桥梁,是数学在各个领域广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到社会各界的普遍重视,它已成为现代社会工作者必备的重要能力之一。

迄今为止,全国大学生数学建模竞赛已经进行了21届。历经20多年的发展,数学建模已经深入人心。但是,在经管类专业的授课过程中真正把数学建模思想融入到经济数学教学中的老师还不多。目前各高校经济数学教学中主要存在以下几个问题:在内容上,传统的经济数学教材仅仅是数学专业教材的简写本,部分教材更像一本习题解;在教学上,数学教学方式单一,越来越形式化,过于注重概念、定理的推导和证明、计算和解题的技巧,过分强调数学的逻辑性和严密性,使学生觉得数学相当抽象,从而对数学问题望而却步,感觉数学远离我们的世界和日常生活;在应用上,数学的应用停留在古典几何和物理上,忽视数学在经济和管理中的实际应用,导致学生认为数学没有用,自觉应用数学知识的意识淡薄,不利于培养学生运用数学知识解决实际问题的能力,且不能满足后续专业课学习的需要;在师资上,缺少一批懂得经济学和管理学知识的数学老师。这些问题导致了很多学生对数学的学习有一种错误的认识,觉得数学没有什么用处,再加上数学抽象难学,很多学生学数学只是为了应付考试,等考试结束了就什么都给忘了。认识上的错误必然使学生学习数学的兴趣下降,从而是一种被动的学习,这也直接导致现在大学经济数学考试中出现大批的挂科现象。即使那些数学成绩好的学生的认识也是片面的,他们中有相当一部分认真学习数学完全是为了拿奖学金和考研。然而,把数学建模思想引入到经济数学的教学过程中是解决这一系列问题的最好办法。

二、数学建模在经济数学中的作用

现代世界发展史证实了经济发展速度与经济数学建模的密切关系。经济数学建模促进经济学的发展;带来了生产效率的提高。在经济决策科学化、定量化呼声日渐高涨的今天,经济数学建模更是无处不在的。如生产厂家可根据客户提出的产品数量、质量、交货期、交货方式、交货地点等要求,根据快速报价系统与客户进行商业谈判。一方面,数学建模可以让学生亲自去感受、理解知识产生、发展的过程,促进学生的职业探索能力培养。在高校中,数学建模课程的教学模式和教学理念一般都是:从问题出发组织教学,学生自己做的开放式的教学。另一方面,数学建模对培养学生观察力、想象力、逻辑思维能力以及分析、解决实际问题的能力起到很大的促进作用。二十多年来,以数学建模竞赛为主题的各种数学建模教学与研究活动已遍布全国各个高校,它在提高学生学习兴趣、激发学习主动性和提高获取知识的能力方面,在培养学生勇于克服困难的顽强毅力、扎实的工作精神和良好的协作能力方面,在培养学生应用知识的能力、创新能力和实践能力方面,都表现出了重要作用。

三、怎样在经济数学教学中融入数学建模思想

1.在绪论课中融入数学建模思想。爱因斯坦曾经说过:“兴趣是最好的老师”,通过一次好的绪论课教学,可以使学生认识到经济数学的重要性和必要性,让学生了解所学知识的来龙去脉和历史渊源,有助于激发学生的求知欲,帮助学生顺利步入经济数学学习的殿堂。在讲经济数学的绪论课时,可以向学生简单介绍微积分的前期史,使学生了解到,微积分产生于17世纪,精密科学从当时的生产与社会生活中获得巨大动力;航海学引起了对天文学及光学的高度兴趣;造船学、机器制造与建筑,堤坝及运河的修建,导弹学及一般的军事问题等等,促进了力学的发展;天文学、力学及工业技术本身,又要对当时的数学作彻底的革命。当时科学面临的主要问题是:求曲线的切线;求变速运动的瞬时速度;求某种条件下的最大值或最小值;求不规则图形的面积、体积、弧长等等,这些问题需要研究变量的数学,而从古希腊继承下来的数学就是常量的数学,所以需要对当时的数学作彻底的革新,革新的旗帜是变量,有了变量数学才能研究动力与变化,才能适应新时期科学技术对数学的新要求,微积分正是在这样的历史条件下应运而生。

微积分的诞生并非单个人的功劳,它是由许多伟大的数学家经过漫长而曲折的奋斗过程而取得的成就。了解这一历史,学生将不仅可以获得真知灼见,还可以获得探寻科学真理的勇气,这对于克服学习数学和数学建模中可能遇到的困难是十分有帮助的。

2.在概念讲授中融入数学建模思想

数学中的概念本身就是从客观事物的数量关系中抽象出来的数学模型,它必然对应着某种实际原型,因此我们在导入它们时应尽可能选取一些学生熟悉的生活中的例子来还原现实情景背后的数学,使学生感到这些概念不是人为的硬性规定,而是与实际生活有密切联系的。

例如,在讲授导数概念时,可以建立如下两个经济模型:

(1)求产量为时的边际成本模型。

(2)求经济函数曲线在某点的切线的斜率。

经济管理中,常涉及经济函数的边际变化问题。例如设C(Q)为产量Q时的总成本函数,当产量改变Q时,总成本的该变量为CQ=C(Q+Q)-C(Q),而=表示产量由Q变为Q+Q时,总成本的变化与产量的变化的比率,即在区间[Q,Q+Q]上的总成本对产量的平均变化率。Q越小,该平均变化率越接近产量为Q时的瞬时变化率。

当Q0时,若总成本的平均变化率的极限存在,即

[lim][Q0]

存在,则该极限表示在产量为Q时总成本对产量的变化率,又称为产量为Q时的边际成本。

类似地,可以得到问题(2)的表达式;[lim][x0]

数学上把可归结为求函数值的改变量与自变量的改变量之商的极限,从这两个表达式的共同性,可以引入导数的定义。

3.在课外作业中融入数学建模思想。目前经济数学教材中的习题涉及应用方面的问题很少,即使有也是一些条件充分、答案确定的问题,这对培养学生的创新能力十分不利。为了弥补这一缺陷,教师可补充一些建模素材到习题中,不仅可丰富教学内容,又能使学生学习数学建模的全过程。

在作业中布置一些开放型的应用题,与经管学科相联系或从实际生活中采集来的开放型应用题,给学生以更大的思维空间,促进数学思想的进一步完善。通过完成作业,使学生感受到数学应用无处不在,这样,学生完成作业就不再是以“练”为主,而是以“做”为主,通过“做”来体验数学,认识数学,掌握数学建模的思想方法。例如,在学习“导数和微分”一章时,介绍过导数的概念以后,课后可以让学生根据搜集我国历年国民生产总值的数据,研究国民生产总值的变化率及其变化趋势,并引导学生为国民生产总值的变化率建立数学模型。

当然,经济数学课的中心内容并不是建立数学模型,我们只是通过数学建模增强学生的数学理论知识的应用意识,激发学生学习经济数学的兴趣。所以在选择数学模型时要注意因材施教,难度不能太大,要结合经管专业的特点,有生产、生活实际背景和较好的应用价值,使学生真正体会到数学的科学性和实用性,达到既有助于理解教学内容,又可以通过对实际问题的抽象、归纳、思考,用所学的数学知识解决问题的目的。所选的模型,还应具有浓厚的趣味性,使学生在趣味盎然的学习气氛之中体会到数学思想方法在实际问题中的应用,达到让学生了解数学来源于生活实际,又应用于生活实际之中,从而激发学生学好数学的决心,提高他们应用数学解决实际问题的能力。

4.丰富课外数学建模活动。课外活动是课内教学的延伸,我们充分拓展学生课外学习空间,使课内课外的学习相得益彰、相互促进。如举办校级大学生数学建模竞赛;顺应时代的进步和数学课程及数学建模竞赛的改革与发展,组织校级MATLAB编程大赛。从而充分发挥学生的特长,促进学生对MATLAB软件学习的积极性;在数学建模课程和数学建模竞赛培训的基础上,学校以数理实验室为平台经常开展数学建模活动等等。

5.如何引导学生建模。在经济数学教学过程中,教师要想方设法引导学生通过自己动手动脑,建立数学模型。例如:首先,为学生创设具体的思维场景。接着,教师根据学生的具体情况组织活动和数学实验,可以是个人探索,或分成小组来进行讨论,教师给出实验的要求,学生按照要求搜集整理相关的数据资料,建立数学模型。最后,是讨论与交流,这是培养合作精神的重要环节,通过发言、提问和总结等各种机会培养学生数学思维的条理性,同时这也是培养学生逻辑思维能力和语言表达能力的一个重要途径。

参考文献:

[1]姜启源.数学建模(第2版)[M].北京:高等教育出版社,2005.

数学建模的实际应用范文篇5

一、数学模型的概念

数学模型是针对或参照某种事物系统的特征或数量相依关系,采用形式化的数学语言,概括或近似地表述出来的一种数学结构。这种数学结构是借助于数学概念和符号刻画出来的某种系统的纯关系结构,所以在数学模型的形成过程中,已经用了抽象分析法,可以说抽象分析法是构造数学模型的基本手段。从广义上讲,数学中的各种基本概念如实数、向量、集合等可叫做数学模型,因为它们是以各自相应的实体为背景加以抽象出来的最基本的数学概念,这种可称为原始模型。如例1:自然数1、2、3、4…n是用来描述离散型数量的模型;例2:每一个代数方程或数学公式也是一个数学模型,如ax+bx+c=0。但狭义的解释,只有那些反映特定问题或特定的具体事物系统的数学关系结构才叫数学模型。一般的,在应用数学中,数学模型都作狭义讲,构建数学模型的目的就是为了解决实际问题。

二、数学模型的类别

1.按照建立模型的数学方法进行分类,如初等数学模型、几何模型、规划模型等。

2.按模型的表现特性,可分为确定性模型与随机模型、静态模型与动态模型、线性模型与非线性模型、离散模型与连续模型。

3.按照建模目的分,有描述型模型、分析模型、预报模型、优化模型、决策模型、控制模型等。

三、数学模型的缺点

1.模型的非预制性。实际问题各种各样,变化万千,这使得建模本身常常是事先没有答案的问题,在建立新的模型的过程中,甚至会伴随着新的数学方法或数学概念的产生。

2.模型的局限性。首先模型是现实对象简化、理想化的产物,所以一旦将模型的结论用于实际问题,那些被忽视的因素必须考虑,因此结论的通用性和精确性只是相对的。另外,由于人们认识能力和数学本身发展水平的限制,有不少实际问题很难得到有实用价值的数学模型。

四、建模的步骤

建模过程有哪些步骤与实际问题的性质、建模的目的等有关,下面我们先看两个例子:

例一:家用电器一件,现价2000元,实行分期付款,每期付款数相同,每期为一个月,购买后一个月付款一次,再过一个月又付款一次,共12次,即购买一年后付清,若按月利率8‰,每月复利计算一次,那么每期应付款多少?

这是一道关于分期付款的实际应用题,我们要求解就必须构建数学模型。通过分析,问题体现出的等量关系为分期付款,各期所付的款及各期所付的款到最后一次付款时所生的利息合计,应等于所购物品的现价及这个现价到最后一次付款时所生的利息之和。因此,设每期应付款为x元,那么,到最后一次付款时,

第一期付款及所生利息之和为x×1.008,

第二期付款及所生利息之和为x×1.008,

第三期付款及所生利息之和为x×1.008,

……

……

第十一期付款及所生利息之和为x×1.008,

第十二期付款及所生利息之和为x,

而所购电器的现价及其利息之和为2000×1.008,

由此x×(1+1.008+1.008+…1.008)=2000×1.008,

由等比数例求和公式得:

x≈175.46(元)

也就是每期应付款175.46元。

例二:关于物体冷却过程一个问题:设某物体置于气温为24℃的空气中,在时刻t=0时,物体温度为u=150℃,经过10分钟后物体温度变为u=100℃,试确定该物体温度u与时间t之间的关系并计算t=20分钟时物体的温度。

为了解决此问题就要构造一个数学模型,首先由于该问题涉及必然性现象,故要选取一个确定性数学模型。又为了反映物体冷却过程这样一个物理现象,还必须应用牛顿冷却定律:在一定温度范围内,一个物体的温度变化率恒与该物体和所在介质之温差成正比。在该问题里,物体温度u应是时间变量的连续函数,记为u=u(t)。对初始温度u而言,温差为u-u(u为空气介质温度)。我们又知道,应变量(函数)的变化率可用导数概念来表述,于是物体冷却过程(现实原型)的数学模型就是如下形式的微分方程:

=-k(u-u),k为比例常数,在具体问题里可确定下来。

具体问题要求出函数关系u=u(t)的显式表示。易得

log(u-u)=-kt+c

u-u=A•e,其中A为常数,代入t=0时,u=u,则u-u=Ae°=A,

u=(u-u)e+u这就是方程解。

有了一般模型,只要把实际问题里的具体数据一一代入即可。

100=(150-24)e+24

k=0.051

因此对具体问题有特殊模型为u=24+126e,将t=20代入则得u(20)=24+40=64答案即为64℃。

所以我们建立数学模型的步骤可以归纳如下:

模型准备:首先要了解问题的实际情境,情况明白才能方法正确。总之,要做好建模的准备工作。

提出问题:通过恰当假设,将问题进行简化。

模型构成:根据分析对象的内在规律和适当工具,构造各个量(常量和变量)之间的等式(或不等式)关系或其它数学结构。建模时应遵循的一个原则是,尽量采用简单的数学工具,这样才有利于更多的人了解和使用。

模型求解:可以采用解方程、逻辑运算、数值计算等各种传统方法,也可使用近代的数学方法如计算机技术等。

模型检验:把数学上分析的结果翻译回到实际问题,并用实际的现象、数据与之比较,检验模型的合理性和适用性。若合乎则得出结果:若不合乎实际则应重新建模,直到检验结果合乎实际为止。

四、有关数学建模能力培养的建议

在分析了数学建模的物点、过程之后,我们知道用数学模型解决实际问题首先是用数学语言表述问题,即构造模型,这就需要有广博的知识、足够的经验、丰富的想象力和敏锐的洞察力。

1.教师应努力成为数学建模的先驱者,根据教学内容和学生的实际情况提出一些问题供学生选择,如关于哥尼斯堡七桥问题;或者提供一些实际情境,引导学生提出问题,如银行的分期付款问题、公平的席位分配、传染病的随机感染、线性规划等问题。特别要鼓励学生从自己生活的世界中发现问题,提出问题。

2.数学建模可采取课题组的学习模式,教师应引导学生学会独自思考,分工合作,交流讨论,互相帮助。

3.数学建模活动中应鼓励学生使用计算机、计算器。

4.教师应指导学生完成数学建模报告,并及时给出评价,评价内容应坚持创新性、现实性、真实性、合理性、有效性,这几个方面不必追求全面,只要有一项做得好就应该予以肯定。

总之,数学建模可以看成一门艺术,艺术在某种意义下是无法归纳出几条准则或方法的,一名出色的艺术家需要大量的观摩和前辈的指导,更需要自身实践,愿我们的教师增强建模意识,激发学生对数学建模的兴趣,为使其今后具备较高的建模能力而努力。

数学建模的实际应用范文篇6

一、对数学模型的相关定义进行分析

数学模型指的主要是按照事物的特征以及数量之间存在的关系,通过形式化的数学语言,对数学结构进行概括。更加广义的一个解释是,所有的数学公式、数学方程、数学概念、数学理论等。对数学模型进行建立的整个过程是数学建模,也就是运用数学方面的语言以及方法来对实际的问题进行描述,并进行有效的解决。数学建模的一个相对比较严格的定义是,在世界当中的特定对象,为了特定的目标,按照对象内部的实际规律,在分析问题以及进行建设之后,应该使用恰当的工具,获得数学结构。

二、对数学模型思想应用在中学数学教学的基本原则进行分析

1.再创造的原则。在中学数学的实际教学当中运用数学建模的思想能够在很大程度上为学生提供良好的平台,在此平台当中,学生能够对问题进行学习分析以及有效的解决。因此,数学建模的核心应该是在学生积极主动参与的基础上来实现再创造的相关活动。

2.数学化的原则。在实际的课堂当中,学生应该把实际的问题有效抽象为数学上的问题,即数学化的一个过程。在中学数学的过程中,应该重点关注学生学会思考,领会到数学当中的世界。

3.教学现实性的原则。在实际的中学数学的教学中,应该对学生所具有的特殊性进行充分强调,还应该针对不同的学生开展不同的建模活动,尽可能的为学生提供富含创造力的舞台,保证学生能够对数学进行有效的运用,在中学数学中得到不同的体验。在此过程中,应该保证学生在数学现实前提下,能够尽可能提高学生的数学能力以及实践能力。之后保证学生学不足的感悟,进而激发出学生的刻苦性。

4.严谨性的原则。在中学数学的实际建模过程当中,不应该对建模的复杂以及完美进行刻意的追求,不需要严格要求模型的实际推算过程,学生应该保证数学现实之下的足够严谨。所以,学生在实际的建模过程当中应该严格遵守评价的相关标准。实际上,社会技术的发展和学生的知识有着非常大的差异性,应该对创新以及发现的层次进行充分认识。除此之外,在中学数学的实际建模当中还应该严格遵循其他的原则,具体为:有效结合抽象以及具体;有效结合演绎以及归纳;有效结合实践以及理论以及有效结合论证与探索等。另外,还应该保证手段以及目的的统一,直接以及间接经验的统一等。

三、对建立或化归为方程或不等式模型的实例进行分析

数学建模的实际应用范文

数学建模就是建立数学模型来解决问题的方法。它是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并“解决”实际问题的一种强有力的数学手段。《数学课程标准》安排了“数与代数”“空间与图形”“统计与概率”“实践与综合应用”四块学习领域,强调学生的数学活动,发展学生的数感、符号感、空间观念、以及应用意识与推理的能力。这些内容中最重要的部分,就是数学建模。数学建模不仅为数学表达和交流提供有效途径,也为解决现实问题提供重要工具,可以帮助学生准确、清晰地认识、理解数学的意义。在中学数学教学活动中,教师应采取有效措施,加强数学建模思想的渗透,提高学生的学习兴趣,培养学生用数学意识以及分析和解决实际问题的能力。在教学中如何渗透数学建模思想呢?

一、创设情境,感知数学建模思想。

数学来源于生活,又服务于生活,因此,要将现实生活中发生的与数学学习有关的素材及时引入课堂,要将教材上的内容通过生活中熟悉的事例,以情境的方式在课堂上展示给学生,描述数学问题产生的背景。情景的创设要与社会生活实际、时代热点问题、自然、社会文化等数学问题相结合,让学生感到真实、新奇、有趣、可操作,满足学生好奇好动的心理要求。这样很容易激发学生的兴趣,并在学生的头脑中激活已有的生活经验,也容易使学生用积累的经验来感受其中隐含的数学问题,从而促使学生将生活问题抽象成数学问题,感悟数学真谛,感知数学建模的存在。

二、参与探究,主动建构数学建模。

数学家华罗庚通过多年的学习、研究经历总结出:对书本中的某些原理、定律、公式,我们在学习的时候不仅应该记住它的结论、懂得它的道理,而且还应该设想一下人家是怎样想出来的,怎样一步一步提炼出来的。只有经历这样的探索过程,数学的思想、方法才能沉积、凝聚,从而使知识具有更大的智慧价值。动手实践、自主探索与合作交流是学生学习数学的重要方式。学生的数学学习活动应当是一个主动、活泼的、生动和富有个性的过程。因此,在教学时我们要善于引导学生自主探索、合作交流,对学习过程、学习材料、学习发现主动归纳、提升,力求建构出人人都能理解的数学模型。

三、解决问题,拓展应用数学建模。

用所建立的数学模型来解答生活实际中的问题,让学生能体会到数学模型的实际应用价值,体验到所学知识的用途和益处,进一步培养学生应用数学的意识和综合应用数学知识解决问题的能力,让学生体验实际应用带来的快乐。解决问题具体表现在两个方面:一是布置数学题作业,如基本题、变式题、拓展题等;二是生活题作业,让学生在实际生活中应用数学。通过应用真正让数学走入生活,让数学走近学生。用数学知识去解决实际问题的同时拓展数学问题,培养学生的数学意识,提高学生的数学认知水平,又可以促进学生的探索意识、发现问题意识、创新意识和实践意识的形成,使学生在实际应用过程中认识新问题,同化新知识,并构建自己的智力系统。

四、注重活动,发展建模应用意识。

数学建模的实际应用范文

[关键词]高中数学建模教学

1开展数学建模教学的意义

1.1解决实际问题的需要。目前国际数学界普遍赞同通过开展数学建模活动和在数学教学中推广使用现代化技术来推动数学教育改革。美国、德国、日本等发达国家普遍都十分重视数学建模教学,把数学建模活动从大学生向中学生转移是近年国际数学教育发展的一种趋势。我国的数学教育在很长一段时间内对于数学与实际、数学与其它学科的联系未能给予充分的重视,因此,高中数学在数学应用和联系实际方面需要大力加强。我国普通高中新的数学教学大纲中也明确提出要切实培养学生解决实际问题的能力,要求增强应用数学的意识,能初步运用数学模型解决实际问题。这些要求不仅符合数学本身发展的需要,也是社会发展的需要。因此我们的数学教学不仅要使学生知道许多重要的数学概念、方法和结论,而且要提高学生的思维能力,培养学生自觉地运用数学知识去处理和解决日常生活中所遇到的问题,从而形成良好的思维品质。而数学建模通过”从实际情境中抽象出数学问题,求解数学模型,回到现实中进行检验,必要时修改模型使之更切合实际,这一过程,促使学生围绕实际问题查阅资料、收集信息、整理加工、获取新知识,从而拓宽了学生的知识面和能力。数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一,是改善学生学习方式的突破口。因此有计划地开展数学建模活动,将有效地培养学生的能力,提高学生的综合素质。

1.2开展数学建模的必要性。数学建模可以提高学生的学习兴趣,培养学生不怕吃苦、敢于战胜困难的坚强意志,培养自律、团结的优秀品质,培养正确的数学观。具体的调查表明,大部分学生对数学建模比较感兴趣,并不同程度地促进了他们对于数学及其他课程的学习。有许多学生认为:数学源于生活,生活依靠数学,平时做的题都是理论性较强,实际性较弱的题,都是在理想化状态下进行讨论,而数学建模问题贴近生活,充满趣味性。数学建模能培养学生应用数学进行分析、推理、证明和计算的能力;用数学语言表达实际问题及用普通人能理解的语言表达数学结果的能力;应用计算机及相应数学软件的能力;独立查找文献,自学的能力,组织、协调、管理的能力;创造力、想象力、联想力和洞察力。

2中学数学建模教学的基本理念

2.1使学生体会数学与自然及人类社会的密切联系,体会数学的应用价值,培养数学的应用意识,增进对数学的理解和应用数学的信心。

2.2学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中的问题,进而形成勇于探索、勇于创新的科学精神。

2.3以数学建模为手段,激发学生学习数学的积极性,学会团结协作,建立良好人际关系、相互合作的工作能力。

2.4以数学建模方法为载体,使学生获得适应未来社会生活和进一步发展所必需的重要数学事实(包括数学知识、数学活动经验)以及基本的思想方法和必要的应用技能。

3高中数学建模教学的一些设想

3.1在教学中传授初步的数学建模知识。进行数学建模教学的主要目的是要培养他们的数学应用意识,掌握数学建模的方法,因此,根据数学建模的过程,在教学时将数学建模中最基本的过程教给学生。

3.2在教学中培养学生的数学建模意识。运用数学建模解决实际问题,必须首先通过观察分析,提练出实际问题的数学模型,然后再把数学模型纳入某知识系统去处理,这不但要求学生有一定的抽象能力,而且要有相当的观察、分析、综合类比能力。学生的这种能力的获得不是一朝一夕的事情,需要把数学建模意识贯穿在教学始终,也就是要不断的引导学生用数学思维的观点去观察、分析和表示各种事物关系、空间关系和数学信息,从纷繁复杂的具体问题中抽象出我们熟悉的数学模型,进而达到用数学模型来解决实际问题,使数学建模意识成为学生思考问题的方法和习惯。通过教师的潜移默化,经常渗透数学建模意识,学生可以从各类大量的建模问题中逐步领悟到数学建模的广泛应用,从而激发学生去研究数学建模的兴趣,提高他们运用数学知识进行建模的能力。

数学建模的实际应用范文1篇9

关键词:高职院校高等数学建模思想应用策略

高等教育的改革必须从课程改革中入手,而对于高职院校的高等数学课程来说,在践行素质教育、能力教育的号召下,引入高等数学建模思想是促进学生更好的认识和应用数学的有效途径。为此,展开高等数学建模思想的研究,对于满足学生的数学学习愿景具有重要的意义。本文将结合高等数学在课堂教学中的具体实践,从数学知识的衔接上展开探讨,分析建模理论知识,并对改进高等数学的教学方法提出一些建议和想法。

一、高等数学对于学生素质教育的作用和意义

高等教育作为普通教育的进一步延伸和提高,对于培养学生的知识素养和能力结构具有重要的支撑作用,特别是高等数学的学习,将数学的思想和方法作为工具来指导学生的实践,培养数学的思维模式和分析能力,对于提升学生的综合素质具有不可替代的作用。长期以来,对于高等数学的课堂教学都是从基本的教材内容中进行适当的压缩和提炼,对学生知识的积累和应用没有明确的要求和考核,缺乏对学生高等数学能力的有力培养。

二、建模思想在高等数学教学中的重要性

数学建模理论主要是结合实际应用来分析实际问题,并将问题转化为数学模型的过程,通过对数学模型的解决来实现对实际问题的解决,在实践应用中,数学建模理论具有重要的现实意义。通常情况下,对于一些特定的问题,通过进行重要的假设,运用变量或代数来借助于一定的数学理论和公式,来对实际问题营造出一个数学结构,不仅能够对产生问题的原因进行一定的预判或未来趋势的发展进行定位,还能从中推导出有利于解决实际问题的决策和控制条件,比如我们用到的牛顿万有引力定律就是数学建模思想的经典。为此,随着现代工业技术的兴起,对计算机技术的广泛应用,都是建立在数学的应用基础之上的,数学建模时代的到来为我们提出了新的要求。

1.数学建模思想的应用有助于促进高等数学的课程改革

高职院校的培养目标在于提高学生的职业素养和应用能力,特别是与生产实践相联系的专业学科,加强对数学建模思想的应用,对于提高学生的综合应用能力,推动高等数学课程改革具有重要意义。知识在于应用,高等数学同样离不开应用环节,为此,在课堂教学中,教师要善于从高等数学知识体系中,提炼出有效的数学模型,以促进学生从建模过程中开阔数学视野,同时,从对数学工具的应用中,来提高学生动手能力和实践能力。

2.数学建模思想的应用有助于培养高素质复合型人才

数学建模思想不仅仅是利用数学理论来解决实际问题,更重要的是通过数学建模的过程,有助于培养学生的思维能力和创新能力,从抽象的问题中提炼出数学模型,复杂的思维逻辑中整理出有效的解决问题的途径和方法。正是因为数学建模思想对人才的培养具有重要的促进作用,国际数学建模竞赛的广泛推广为更多的学生能够从自身学科出发,结合工程技术、管理科学等来加以分析,并通过小组合作、探讨,通过相应的假设、构建、求解等环节来推导出结果,并对结果进行检验和分析,以促进数学模型的改进。数学建模竞赛的开展,为学生提高高等数学的学习兴趣也起到了促进作用。

3.数学建模思想的应用有助于开阔学生的知识面

数学建模理论因其涉及的知识面广,在对具体实际问题进行构建时需要从多种学科进行链接知识,而单纯依靠数学知识是难以实现对问题的全面分析和有效解决的。为此,结合高等数学的知识特点,展开对建模思想和方法的学习和应用,从生物、化学、物理、经济、管理等学科进行吸收有益的知识来补充到数学模型的构建体系中,通过线性比较、生态模型、概率统计、图论、计算机仿真、层次模型比较等方法,让学生从中感受到了知识的多样性和丰富性,也激发了学生从建模的过程中,加深了对知识的认识和理解,为促进学生养成自主学习的习惯奠定了基础。

4.数学建模思想的应用有助于培养学生的创新能力

数学建模思想是一种思维能力的训练过程,不仅需要学生从基本的知识点中来寻找相关知识的联系,也需要从实际问题中通过思维创新来提高解决数学问题的能力。在高等数学课堂教学中,对数学建模思想的分析和融入,能够触发学生对数学知识的原始性冲动,并在思维的过程中,将实际问题抽象出数学的模型,进而实现对学生的观察能力、分析能力、以及综合能力的训练。在建模思想的运用中,需要学生从实践中来体验思想的深刻性和灵活性,对于不同的抽象模型所解决的不同问题,也需要学生从自身出发,来培养学生的独立思考能力,进而在探索的过程中形成创新能力。

四、总结

高等数学作为高等教育中的一门基础课程,对于培养学生的分析能力和思维能力具有很好的促进作用,尤其是引入数学建模思想,将数学的应用性和实践性作为数学建模的基本能力,为此,可以帮助学生从错综复杂的实际问题中,逐步养成深入思考的习惯,明确数学思想的本质,以充分发挥学生的想象力和实践能力,为学生在未来的实际工作中养成良好的思维习惯奠定基础。

参考文献:

数学建模的实际应用范文1篇10

所谓数学建模,指的是将实际问题中各要素的内在联系与变化抽象成数学语言,构建适当的数学关系(如公式、函数、方程或图形),使原来的实际问题转化为易于解决的数学问题。初中学生由于掌握的数学知识非常有限,所能学到的数学模型也不多,但数学建模作为一种重要的数学思想方法,初中学生有必要去了解它的重要性,知道它的作用,以逐步形成数学建模意识,培养解决实际数学问题的能力。

一、创设情景教学,体验数学建模

乐清市地处东南沿海,境内多丘陵,为解决雨季洪涝灾害和旱季生产生活用水问题,在市内建立了许多水库,其中西山水库在一次雨季来临时水位在5小时内持续上涨,下表记录了这5小时的水位高度。

据天气预报当地还会持续降雨5小时,雨量基本不变,而水库的警戒水位是34米,问在这次降雨过程中若水库不泻洪有没有危险?

这是一个典型的利用数学建模解决实际问题的例子。首先是建模,要根据表中给出的数据在直角坐标系中描出散点图,再根据所得的散点图的形状判断两变量之间的函数关系,选择相应的函数关系式;其次是解模,求出所选函数关系式的待定系数,确定具体的函数解析式,即y=0.5x+30,把x=10代入求出y值,并与34比较作出判断。

二、注意掌握策略,把握数学建模

数学建模解决应用性实际问题的步骤是:审题,寻找内在数学关系建立数学模型求解,其中关键步骤是审题建模。所以,首先要教学生掌握审题策略:

1.阅读材料,观察图表,找出题目中的关键字、词,如不到、超过、增加到、增加了、至多、至少、大于、小于等,结合实际意义,深入挖掘题中隐藏着的数量关系与数学意义,捕捉题中的数学模型。

2.在某些应用题中,数量关系比较复杂,学生难以把握,这时可以根据事物类别、时间先后等列出表格或画出图形。

例题:某工厂现有甲种原料360kg,乙种原料290kg,计划利用这两种原料生产A、B两种产品,共50件。已知生产A产品一件需用甲种原料9kg、乙种原料3kg,获利700元;生产B种产品一件需用甲种原料4kg、乙种原料10kg,获利1200。

(1)若安排A、B两种产品的生产,共有哪几种方案?请设计。

(2)设生产A、B两种产品获得的总利润是y元,其中一种产品的生产件数是x,试写出y与x之间的函数关系式,并利用函数的性质说明(1)中的哪种生产方案可以获得最大总利润,最大的总利润是多少?

分析:本题中共出现了9个数据,其中涉及甲、乙两种原料的质量,生产A、B两种产品的总件数及两种产品所获得的利润。为了清楚地整理题目所涉及的各种信息,可采用列表法。

略解:设安排生产A种产品x件,则生产B种产品是(50-x)件,根据题意建立下列表格:

建立数学模型:

通过将较复杂的数量对号入座地填入表格,将复杂的数量关系清晰化,使分散于文字中的数学信息呈现在图表中,让人感觉一目了然。

三、通过实际应用,体会数学建模

教学中,通过解决实际问题使学生掌握相关类型的建模方法,能为他们今后主动用数学方法、手段处理问题提供知识储备,增加数学建模的经验。中学数学中常见的数学建模类型大致有以下几种:

1.方程或不等式。在实际生活和生产中常出现有关行程、路程、工程、统筹安排、最佳决策、最优化问题等方面的应用题,可建立方程或不等式模型求解。方程和不等式是初中数学中两个最基础的知识点,也是很重要的数学模型思想,在解决实际问题中经常可以用到。

2.函数模型。在生产生活中普遍存在成本最低、利润最高、产出最大、效益最好、用料最省等应用问题,都可以应用函数建模来求解。

函数作为研究现实世界中变量之间关系的一种数学工具,对于初中学生来说是抽象难懂的,所以,教师在教学中一定要注重函数基础知识的落实,注重函数与现实生活的结合,以便学生解决实际问题。

3.几何模型。在现实生活和生产中,诸如测量、设计、材料加工等都涉及到几何图形的应用,常常需要利用图形的几何性质建立相应的几何模型,再与方程、不等式、三角函数等知识结合进行求解。

数学建模的实际应用范文篇11

【关键词】高职高专数学建模财务模型医学模型MATLAB软件

【中图分类号】G642【文献标识码】A【文章编号】1674-4810(2014)24-0100-02

一引言

随着科学技术的不断发展和社会的进步,数学这一重要的基础学科迅速向自然科学和社会科学的各个领域渗透,并在经济管理、工程技术等方面发挥着越来越重要的作用。数学与计算机技术相结合,已经形成了一种普遍的、可以实现的关键技术,并成为当代高新技术的重要组成部分。

高职高专院校,以培养技能型、应用型人才为目标,因此学生的动手操作能力就显得尤为重要。针对不同的实际问题,采用建立数学模型的方法,数学建模可以将实际问题经过抽象、简化、假设、引进变量等处理后,将实际问题转化成数学问题,用数学表达式展现出来并建立数学模型。最后,再运用数学的方法及计算机技术去求解,得到实际问题的解答。这样既能激发学生学习的兴趣,又能提高学生运用计算机解决实际问题的能力。

MATLAB提供了易学、易用的图形用户界面,使用户在最短的时间内就可以掌握较复杂的统计分析技术。MATLAB具有统计分析和统计建模的统计工具箱。利用统计工具箱提供的标准函数,使用者可以完成统计上绝大部分数据的分析任务。在财务、金融领域,对财务数据进行统计分析或根据统计分析的原理建立财务变量之间的相互依存关系是统计建模的重点内容。MATLAB统计建模就为财务随机模型的建立提供了非常强大的工具,扩充了财务建模研究的内容,为财务建模提供了很好的计算机支持。在自然界和人类社会中,变量之间存在的不确定关系就是变量之间的随机关系,而随机关系需要根据统计原理应用统计分析的方法来建立,因此就可以建立相应的统计模型,创造出适合于特定高校、特定企业在特定情况下的模型系统。

又如在医学领域,传染病的频繁爆发,目前面临着研究困难、病情难以控制的局面,建立数学模型也成为一种重要的研究手段。采用数学模型模拟传染病发病、传播过程,用计算机仿真求解数学模型,计算机仿真具有计算方式简单、过程易控制、结构灵活等优点,便于微分方程求解,求解结果能够更好地为传染病提供防治措施。

因此,财务建模以及医学模型的较理想软件平台是MATLAB,建议在财务建模以及医学建模的理论研究和实践中使用MATLAB作为其工具。

二数学建模的一般步骤

1.模型的准备

建模的实际问题可能来自各行各业,我们都不可能是全才。因此,当刚接触某个问题时,我们可能对其背景知识一无所知。这就需要我们想方设法地去了解问题的实际背景。通过查阅、学习,可能对问题有了一个模糊的印象。了解问题的实际背景,明确建模目的,再通过进一步的分析,对问题的了解会更明朗化,由此初步确定用哪一类模型比较合适。

2.模型的假设

由于现实问题的复杂性、多样性,一般来说,不能指望在一个合适的数学模型中抓住影响问题识别的所有因素,假设目的在于通过减少所考虑因素的数目来进行简化,必须确定余下变量之间的关系,再次通过假设相对简单的关系,就可以降低问题的复杂性。必要而合理化的模型假设应遵循的原则:简化问题和保持模型与实际问题的“贴近度”原则。

3.模型的构造

根据所做的假设,利用适当的数学工具(应用相应的数学知识),建立包含常量、变量等数学模型,如优化模型、图的模型、差分方程模型、微分方程模型等。事实上,建模时还有一个原则,即尽可能采用相对简单的数学工具,以便使更多的人能理解和使用模型。

4.模型的求解

对所建立的模型运用数学知识进行求解,包括画图形、解方程、数值计算、优化方法、统计分析、证明定理以及逻辑运算等,会用到传统的和近代的数学方法,特别是软件和计算机技术。目前常借助一些非常优秀的数学软件,如Matlab、Mathematics、Maple、Lingo等,本文将以MATLAB软件为平台,介绍MATLAB的应用。

5.模型的分析、检验

将求得的模型结果运用数学知识进行分析,如结果的统计分析、误差分析、模型对数据的灵敏性分析、对假设的强健性分析等。有时根据所得的结果给出数学上的预测;有时根据问题的性质,分析各变量之间的关系和特定性态;有时则给出数学上的最优决策或控制。把模型分析的结果返回到实际所研究的对象中,如果检验的结果不符合或部分符合实际情况,那么我们必须回到第二步,修改、补充假设或做出另外的简化假设,重新建模,有时甚至要回到第一步重新定义问题,如果检验结果与实际情况相符,则进行最后一步――模型的实施。

6.模型的实施

模型只是在档案柜里是没用的,要用决策者和用户能懂的术语来解释模型是否对实际问题有用。最终的模型要回到实际问题的应用中。应用的方式与问题性质、建模目的及最终的结果有关。不是所有的问题建模都要经过这些步骤,有时各步骤之间的界限没有那么分明,建模时不要拘泥于形式,按部就班。

三数学建模的应用

数学建模应用领域广泛,涉及经济模型、医学模型、生物模型、社会模型、交通流模型等,就本院的专业特点,主要讨论经济模型以及医学模型的应用。运用数学工具解决实际问题时,往往需要先把从实际问题中反映出来变量之间的函数关系表示出来,再进行计算和分析,这个过程就是数学中常用的建立函数关系(即数学建模)的过程。

1.经济数学模型

在经济数学的教学中,将数学建模的思想和方法融入数学主干课程,是对数学教学体系和内容改革的一种有益尝试。应当将数学知识与经济财贸的专业特色和具体实践相结合,才能达到提高学生能力的最终目的。而数学建模,恰好为这一结合过程提供了一个自然的平台。经济、财贸本身与基础数学知识有着千丝万缕的联系,从财会的统计处理到抵押贷款买房的预测分析,都是以数学为分析工具,而这一过程的结合,就是数学建模的过程。如抵押贷款买房的分析过程中,可以根据偿还期的长短,以不同利率偿还抵押贷款,每个周期欠款额因要付的利息而增加,又因每月还款而减少,可以建立一个动力系统模型。根据此模型运用MATLAB编程计算得到住房抵押贷款的序列图列,达到后续每月应还款额预测的最终目的。向学生讲授类似的实际数学模型与数学应用的案例,让学生切实感受到“数学在身边”,培养学生在日常生活中实际应用所学数学知识的能力。

如经济活动中常见的函数,复利公式:设现有本金A0,每期利率为r,期数为t0,若每期结算一次,则第一期末的本利和为A1=A0+A0r=A0(1+r),将本利和A1再存入银行,第二期末的本利和为A2=A1+A1r=A0(1+r)2,再把本利和存入银行,如此反复,第t期末的本利和为At=A0(1+r)t,这是一个以期数t为自变量,本利和At为因变量的函数。每期按年、月和日计算,则分别得出相应的复利公式。如按年为期,年利率为R,则第n年末的本利和为An=A0(1+r)n(A0为本金)。

2.医学数学模型

在中医药院校数学教学课程中加入实际操作的能力,实际问题通过分析得出数学模型,最终还是要靠数据去计算数学模型,得出其解。在计算过程中,不可能像传统数学应试中的简单计算,而是涉及大量数据的计算,此时不可能靠手算得出结论,必须依赖计算机进行处理。所以计算机和数学软件的使用,给处理繁琐的中医药数据和实际问题带来许多便利,提高了数学运算速度和解决实际问题的效率,特别在医学统计课程中更是如此。在讲解此类数学课程中不能只讲空洞的理论,一定要结合实例,讲解相关软件的操作,增强学生的动手能力。学校已经在部分院系开设了数学建模选修课,我们在授课时特安排了三分之一学时专门进行相关数学软件的计算机操作,以教师讲为辅、学生练为主,重点培养学生利用计算机技术和数学软件解决数学问题的能力,提高学生动手处理数据的能力。下一步设想在限选和必选数学课程中加入数学软件课程的一些上机操作,学生对此也比较感兴趣,借此可进一步探索我院数学教学的改革。

四提高高职高专学生的创造力

高等职业教育的培养目标是:以就业为目的,以能力为本位,为生产、服务、管理第一线培养高素质、高技能的应用型人才。根据这个目标,高等数学的教学应以应用为主,理论为辅,加强数学应用性的教学研究,加强数学思维能力的训练和培养,培养学生理论联系实际的能力,并通过数学建模的教学提高学生的创造力。

数学建模突破了传统的教学方式,以实际问题为中心,能有效地启发和引导学生主动寻找问题、思考问题、解决问题。同时,由于其题目的开放性、教学方法的灵活性,对青年学生非常具有吸引力,以培养学生的数学应用意识,训练学生用数学知识解决实际问题的能力为主要突破口,开展数学建模应该是推动高职数学教学改革进程一个很好的办法。

五将MATLAB与教学相结合

传统数学教学以理论教学为主,不少学生对数学望而生畏,特别是针对高职高专学生,尤其数学底子薄、基础差的学生更是一项难度较高活动,因此,需要在实践过程中不断探索适用于高职院校所有学生的数学教学方法,只有这样才能真正使高等数学的教学满足学生的要求、满足社会的要求、满足时代的要求。其实计算机水平发展至今,在高等数学以及经济数学的教学中借助成熟的数学软件进行教学,让学生以此为工具进行探索是非常必要的。我们应在科研和教学上都能积极地与其他专业老师(经济、管理、计算机等类)展开合作,争取成为既懂数学又懂经济管理和计算机的老师。在本校的高职高专经济数学、高等数学教学中引入MATLAB数学实验,可以提高学生的学习积极性以及学习成绩。但是,对于高职经济数学、高等数学课程,如何使MATLAB软件与其教学过程更融洽地结合,还需要我们继续进行研究和探索。

六结束语

总之,高职高专院校的数学侧重于应用,而不是理论。教学时应尽量将数学通俗化、直观化、简单化,对高职高专院校的学生而言,关键是要学会用数学建模方法去解决实际问题,能用数学的思维去考虑问题,只有沿着这个方向,开展高职高专院校数学改革才能走得更远。

参考文献

[1]姜启源、谢金星、叶俊.数学模型[M].北京:高等教育出版社,2011

[2]颜文勇.数学建模[M].北京:高等教育出版社,2011

数学建模的实际应用范文篇12

关键词:建模法初中数学应用题教学

中图分类号:G63文献标识码:A文章编号:1003-9082(2017)01-0261-01

前言

我国新一轮的基础教育改革非常注重学生数学知识的掌握以及学生运用数学知识的能力。数学是一门较为抽象的学科,需要学生有严密的逻辑思维并通过自己的推导得出准确的结论,并且能够将所学到的数学理论知识广泛的运用到生活的各个领域,因此,教师在教学中要充分的运用建模知识,帮助学生掌握应用题的解题方法并能够很好的运用到实践中。

一、明确建模过程

在数学中建立数学模型简称为数学建模,这一过程可以概括为:实际问题――转化为抽象问题――根据数学中某个定理或者规律建立变量和参数之间的联系――求解该数学问题――验证――使用。这一过程的完成,需要分步骤进行。首先,要进行准确地审题,建立起数学模型。数学应用题都是一些实际的问题,题目较长,涉及的概念和名词较多,这就需要学生在读题的过程中要认真的细致的审题,分析应用题的实际背景,了解建模的目的。同时要通过认真的审题,弄清楚题目中的已知事项,认真的分析需要建模的对象的多方面信息,深入的思考挖掘应用题的内在规律,分析得出所求结论限制条件;第二步要在审题的基础上进行题目的简化,将简化后的题目与建模紧密的联系起来,抓住题目中的主要的关键的信息,省去次要的信息,找出题目中的数量关系,联系自己学到的数学知识,科学的运用相关的方法,用准确地数学语言做出科学的假设;第三步,将数学化后的已知条件与所求的问题有效地联系起来,适当的将参数变量或者是坐标系引入到解题的过程中,将已知的数量关系用数学公式、表格或者是图形准确地表达出来,进而完成数学的建模过程,但是这一模型是否符合实际的情况,要在完成计算后用实际的现象和数据等检验模型是否合理。

二、掌握建模方法

建模方法的掌握是学生进行建模的关键,有助于学生在建模的过程中找准建模方法,科学有效的将实际的应用问题转化为数学语言,建立相关的数学模型,进而快速的解决这一实际的数学问题。在初中的数学教学中,主要有以下三种建模方法,教师要引导学生有效地准确的掌握这几种建模方法,让学生能够科学有效的进行数学的建模。第一种方法是图像分析法,这种方法是要学生细致的观察图像,进而抽象出图像中的数量关系,建立起对应的数学模型。第二种是列表分析法,即将应用题中的已知条件通过列表的方式进行整理,进而探索实际问题的建模方法。第三是关系分析法,即在应用题中寻找关键数量之间的关系,通过这些关键的关系建立起解决这一问题的数学模型。

三、掌握基本的应用题模型

掌握常见的应用题模型能够帮助学生最大限度的提升解题的能力和速度,增强学生数学学习的兴趣。在初中阶段常见的有4种模型。第一种是通过几何图形模型的建立快速有效的解决实际的问题,如,王先生参加了一个晚会,参加人数共为40人,若每两位到会客人都握手一次,那么参会的人一共握手多少次?这一问题很显然必须通过建立几何图形来进行分析,通过这种模型的建立能够很快的发现这些数量之间的关系,快速的解决这一问题。第二种是建立不等式或者是方程的模型,如,A、B两个印刷厂分别要印刷彩色单页20万张和25万张,供应C、D两个公司使用,C、D两公司需要单页量为17万和28万,已知A厂运往C、D两公司的费用分别为200元/万张和180元/万张,B厂运往C、D两公司的费用分别为220元/万张和210元/万张。设总的费用为Y吨,A厂运往C公司X万张,试着写出Y与X的函数关系式,这就需要通过建立方程或者是不等式模型进行解决。第三种是建立三角函数的模型,如,在初中数学中学会了很多的测量方法,在具体的测量教学楼、大树、旗杆等实物时要运用学到的三角函数知识建立数学模型进而解决实际的问题。第四是建立起函数模型,如,小红的爸爸想给小红买一双运动鞋,但是想让小红自己算出需要买几“码”,小红回到家后,量了一下爸爸的鞋子是25.5厘米41码,妈妈的鞋是23厘米36码,自己的鞋是21.5厘米,那么是几码呢?这一问题就需要通过建立一次函数的数学模型进行解决。

四、开展相关的建模“活动”

在数学教学中的建模活动就是要充分的发挥学生的主体作用,学生不再是单纯的听老师讲课而是要自己积极地主动的参与课堂的教学过程,体会设计并建立数学模型的全过程。教师在教学的过程中更多的是引导学生掌握相关的知识,而不是告诉学生运用什么样的方法建立模型,要通过逐渐的引导和询问,让学生积极地进行思考,进而建立起数学模型的概念和思路,在遇到类似的数学问题是能够条件反射的想到解决的办法。其次,教师在教学中要注重知识的产生和发展的实际教学,知识的产生和发展过程本身就蕴藏着丰富的数学模型建立的方法和思想,这就要求教师在教学的过程中要分析际问题的背景,引导学生合理的简化参数,以及科学的进行假设,同时重视数学模型的建立过程和原理,引导学生能够将数学知识和实际的问题进行很好的转化,要重视引导学生掌握数学的建模过程,通过重视过程的学习让学生理清建模的思路,将数学知识与数学实际的问题能够自如的转化并合理的进行求解。此外,教师在教学的过程中应根据学生的实际情况和教学的具体要求分层逐步的进行建模的教学。

结语

总之,在初中数学教学中,要引导学生掌握数学建模法,适应时展对学生提出的新的要求,通过建模法帮助学生掌握数学知识,激发学生数学学习兴趣,提升学生数学运用能力,进而提高学生的数学素养和综合素质。

参考文献

[1]刘海燕.初中数学建模思想初探[J].现代教育科学,2011,04:126-128.

[2]莫友明.加强初中数学建模教学培养学生应用数学意识[J].当代教育论坛(教学研究),2011,06:72-74.

你会喜欢下面的文章?