小学数学教学基本概念(6篇)

来源:

小学数学教学基本概念篇1

关键词:小字数学;课堂;概念教学

中图分类号:G622文献标识码:B文章编号:1002-7661(2015)23-384-01

在小学数学课堂教学中,数学概念是数学知识结构中的基本材料。正确的理解和清晰、完整的掌握数学概念是学好数学基础知识的前提,又是培养运算和解题能力的首要条件。反之,就会影响学生的思维能力,又会影响数学的教学质量,因此,概念教学在小学数学教学中有着十分重要的地位。那么怎样进行概念教学呢?下面谈一下自己在这方面的初浅认识。

一、引入概念

小学数学概念是一种思维形式,也是认识阶段的总结。人们的认知规律都是由感性到理性,由直观到抽象的过程,因此,引入概念应遵守这一原则,那么怎样引入呢?

1、实物展示。如:教分数的意义时,我先拿一个苹果,把他平均切成两块,其中的一份(一块)可以用分数表示。再分成4份,这样的一份或三份可以用分数表示。通过实物学生理解了单位“1”平均分成若干份、“一份”或“几份”都能用分数表示。

2、亲手操作。我在讲长方形的周长时,课前先让学生用细铁丝做一个长方形,然后让他自己量一量周长。在操作中,学生懂得了周长即四边的长度。求长方形的周长就是用“长+宽+长+宽”,可简单为(长+宽)×2,学生通过实际操作,懂得了周长这一概念,并能根据公式求周长。

3、以旧带新。数学中有些概念难以用直观形象来表达,但它却与旧知识有密切的联系。如:再讲公约数、最大公约数这两个概念时,我先在黑板上写出约数这一概念,然后提问什么叫约数?学生回答:a能被b整除。b就叫a的约数。接着让学生写出12和18各有哪些约数?12的约数有“1、2、4、6、12、”,18的约数有“1、2、3、6、9、18”然后让学生找出12和18的公有约数是:1、2、3、6、最后指出12和18的最大公约数是6.这就是由旧概念“约数”,引出新概念“公约数”和“最大公约数”。

二、形成概念

引入概念后,接着就进行概念的形成教学,那么怎样进行形成概念的数学呢?

1、抓住本质,探求概念。因为概念是事物本质属性的反应,所以进行概念形成教学时要启发,引导学生观察思考,抓住本质探求概念。如:学习“质数”和“合数”这两个概念时,先板书:写出下面各数的约数。思考:①左竖排的约数有什么特征?②右竖排的约数有什么特征?

2的约数有:1、2。4的约数有:1、2、4。

3的约数有:1、3。6的约数有:1、2、3、6。

5的约数有:1、5。9的约数有:1、3、9。

通过观察思考,回答左竖排的约数的特征,是:有两个月数,1和本身;右竖排约数的特征是:至少3个约数,1和本身以外还有别的约数,然后告诉学生左竖排2、3、5这些数都是质数,右竖排4、6、9这些数都是合数。那什么叫质数、什么叫合数呢?让学生思考、探求、概括,在教者的启发和点拨下,学生都能抓住本质特征(约数的个数),准确地说出什么叫质数,什么叫合数。

2、找出异同,明确概念。在教学中有些概念意义相近,但本质上是有区别的,学生容易混淆,应找出异同点,加以辨析,明确概念。例如:学完奇数和质数后,学生对这两个概念就容易混淆。我先让学生说出质数和奇数这两个概念。质数:只有1和它本身两个约数的、叫做质数。奇数:不能被2整除的数叫奇数。然后再让学生讨论:①所有奇数都是质数吗?②质数都是奇数吗?通过讨论使学生明确有一部分奇数有两个约数是质数,质数除了“2”以外,所有的都是奇数,这样找出了异同点,也就明确了概念。

三、巩固概念

在学生初步学完概念的基础上,应及时加强巩固概念的训练。这是教学中不可缺少的环节。那么应采取什么措施改巩固概念呢?

1、理解中巩固。在学生学完概念后,应先让学生认真阅读教材。加深自己对概念的理解。然后由教师提问,来检查学生是否真正巩固了概念。如:学完互质数的概念后,在练习课上,我让学生看书,边看边想黑板上的问题,①什么叫互质数?②按要求举出三组互质数的例子。、

a.一个是质数一个是合数的互质数:(5和6)

b.两个都是质数的互质数(3和7)

c.两个都是合数的互质数。(8和9)

2.比较中巩固。有比较才能有鉴别。

在教学进入一个阶段后,应把一些相近易混的概念安排在一起加以比较,从比较重加深对概念的巩固。如“①整除与除尽有什么区别?②长方形的面积和周长有什么不同?

3、整理中巩固。在教学进入复习阶段,教师应帮助学生把一些相关的概念进行系统整理。因为教学概念有自身的系统,往往前一个是后一个的基础,后一个是前一个的发展,通过整理,就像珍珠穿线一样把概念串起来。

小学数学教学基本概念篇2

一、概念的引入

1.概念的引入是概念教学的第一步。教师应从学生的生活实际入手,充分运用实物、教具、图表等直观教具,以及动手操作等直观手段,帮助学生获得正确、完整、丰富的表象,把“纯粹”的数学知识与学生在日常生活的、熟悉的、具体的材料相联系,这样就有利于抽象的数学概念具体化、形象化,便于学生的理解,同时也能激发学生的思维和探索新知的欲望。例如,“分数的初步认识”的教学,主要要说明“谁”的几分之几,为了说明这一点,可出示不同形状和大小的图形,折出它们的二分之一,让学生明白虽然都是二分之一,却表示不同的大小,所以一定要说明“谁”的二分之一。2.同时,在概念的引入中要格外做到旧知识的迁移。任何一个数学概念都是在以往概念的基础上演变发展而来的,前一个概念是后一个概念的基础和推理依据,旧概念铺垫不好,就会影响新概念的建立,如,在“整除”概念基础上建立了“约数”、“倍数”概念;由“约数”导出“公约数”、“最大公约数”;由“倍数”引出“公倍数”,再导出“最小公倍数”。在几何知识中,由长方形的面积导出正方形、平行四边形、三角形、梯形等的面积公式。3.最后还可以从计算引入新概念。有些概念不便于用具体事例来说明,而通过计算才能揭示数与形的本质属性。如,教学“互为倒数”这个概念时,可先出示一组题让学生口算:3×1/3,1/7×7,3/4×4/3,9/11×11/9……,算后让学生观察这些算式都是几个数相乘,它们的乘积都是几。根据学生的回答,教师指出:象这样的乘积是1的两个数叫做互为倒数。其它如比例、循环小数、约分、通分、最简分数等都可以从计算引入。

二、概念的形成

形成概念的教学是整个概念教学过程中至关重要的一步。概念的形成是通过对具体事物的感知、辨别而抽象、概括出概念的过程,因此学生形成概念的关键就是发现事物或形的本质属性或规律。1.概念语言的本质属性。一个数学概念建立后,需要对其本质进行剖析,也就是说要对该概念的本质属性再一一从定义中分离出来加以说明,把握共知要素。对概念中的关键词语要着重讲解,对概念的名称、符号要交代清楚,也就是说要对概念描述的语言做到准确把握。如,什么叫循环小数?课本是这样定义的:“一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的数叫循环小数。”这里要抓住两点,一是前提是一个数的小数部分,与整数部分没关系,二是属性是一个数字或几个数字重复出现,且是依次不断的。明确了这两点就能迅速的判断出某些数字是不是循环小数,如7777.777、7.32132、2.2022020002……这样的小数都不具备循环小数的本质属性,所以都不是循环小数。而0.324324……、0.146262……具备了循环小数的本质属性,它们都是循环小数。2.注意比较有联系的概念的异同。数学中的一些概念是相互联系的,既有相同点,又有不同之处。划清了异同界线,才能建立明确的概念。而对这类概念,应用对比的方法找出它们之间的联系、区别。使学生更加准确地理解和牢固记忆学过的概念。如教学“质数和合数”时,先给出一些自然数,让学生分别找出这些数的所有约数,在比较每个数的约数的个数;然后根据约数的个数把这些数进行分类,①只有一个约数的,②只有1和它本身两个约数的,③除了1和它本身,还有别的约数的,即约数有三个或三个以上的;最后引导学生根据三类数的不同特点,总结出“质数”和“合数”的定义。3.运用变式,突出概念的本质属性。概念是客观事物本质属性的概括。学生理解概念的过程即是对概念所反映的本质属性的把握过程,在教学过程中,通过变式的运用,可以使要领的本质属性更加突出,达到化难为易的效果。例如,在三角形概念教学中,通过不同形态(锐角三角形、直角三角形和钝角三角形)不同面积,不同位置的三角形与一些类似三角形的图形进行比较,就可以帮助学生分清哪些属于三角形的本质属性,哪些属于三角形的非本质属性,从而准确地理解三角形的概念。在直角三角形概念的教学中,让学生接触不同位置不同形态的一些直角三角形如平放,斜放,从而使生理解只要有一个角是直角三角形,就是直角三角形即直角三角形的概念。

三、概念的巩固

概念的形成是一个由个别到一般的过程,而概念的运用则是一个由一般到个别的过程,它们是学生掌握概念的两个阶段。通过运用概念解决实际问题,可以加深、丰富和巩固学生对数学概念的掌握,并且在概念运用过程中也有利于培养学生思维的深刻性、灵活性、敏捷性、批判性和独创性等等,同时也有利于培养学生的实践能力。教学中主要是通过练习来达到巩固概念的目的的。练习是使学生掌握基础知识和技能,培养和发展学生思维能力的重要手段。但在练习时必须明确每项练习的目的,使每项练习都突出重点,充分体现练习的意图,做到有的放矢,使练习真正有助于学生理解新学概念,有利于发展学生的思维。如为了帮助学生巩固新学概念和形成基本技能,可以设计针对性练习;为了帮助学生克服定式的干扰,进一步明确概念的内涵和外延,可以设计变式练习;为了帮助学生分清容易混淆的概念,可以设计对比练习;为了帮助学生扩展知识的应用范围,加深学生对新学概念的理解,培养学生的创造性思维,可以设计开放性练习;为了帮助学生沟通新学概念与其他知识的横向、纵向联系,促进概念系统的形成,培养学生综合运用知识的能力,可以设计综合性练习等。但千万要按照由简到繁、由易到难、由浅入深的原则,逐步加深练习的难度。如学过“加法和减法的关系”后,可以安排以下三个层次的练习:

这一层是基本练习,它是刚学完新课之后的单项的、带有模仿性的练习,它可以帮助学生巩固知识,形成正确的认知结构。

b.填空.说一说你是怎样想的.

这一层是发展练习,它是在学生已基本掌握了概念和初步形成一定的技能之后的练习,它可以帮助学生形成熟练的技能技巧。

c.求未知数X。

这一层是综合练习,它可以使学生进一步深化概念,提高解题的灵活性,培养学生的数学思维能力,实现由技能到能力的转化。

小学数学教学基本概念篇3

一、教学中让学生理解数学概念

1.直观形象地引入概念

数学概念比较抽象,而小学生,特别是低年级小学生,由于年龄、知识和生活的局限,其思维处在具体形象思维为主的阶段。认识一个事物、理解一个数学道理,主要是凭借事物的具体形象。因此,教师在数学概念教学的过程中,一定要做到细心、耐心,尽量从学生日常生活中熟悉的事物开始引入。这样,学生学起来就有兴趣,思考的积极性就会提高。如在教平均数应用题时,我利用铅笔做教具,重温“平均分”的概念。我用9个同样大小的小木块摆出三堆,第一堆1块,第二堆2块,第三堆6块,问:“每堆一样多吗?哪堆多?哪堆少?”学生都能正确回答。这时,我又把这三堆木块混在一起,重新平均分成三份,每份都是3块,告诉学生“3”这个新得到的数,是这三堆木块的“平均数”。我再演示一遍,要求学生仔细看,用心想:“平均数”是怎样得到的。学生看我把原来的三堆合并起来,变成一堆,再把这堆木块分做3份,每堆正好3块。这个演示过程既揭示了“平均数”的概念,又有意识地渗透“总数量÷总份数=平均数”的计算方法。然后,又把木块按原来的样子1块,2块、6块地摆好,让学生观察,平均数“3”与原来的数比较大小。学生说,平均数3比原来大的数小,比原来小的数大,这样,学生就形象地理解了“求平均数”这一概念的本质特征。

2.运用旧知识引出新概念

数学中的有些概念,往往难以直观表述。如比例尺、循环小数等,但它们与旧知识都有内在联系。我就充分运用旧知识引出新概念。在备课时要分析这个新概念有哪些旧知识与它有内在联系。利用学生已掌握的旧知识讲授新概念,学生是容易接受的。苏霍姆林斯基说:“教给学生能借助已有知识去获取知识,这是最高的教学技巧之所在。”从心理学来分析,无恐惧心理,学生容易活跃;无畏难情绪,易于启发思维;旧知识记忆好,容易受鼓舞;所以运用旧知识引出新概念教学效果好。例如从求出几个数各自的“倍数”从而引出“公倍数”“最小公倍数”等概念。总之,把已有知识作为学习新知识的基础,以旧带新,再化新为旧,如此循环往复,既促使学生明确了概念,又掌握了新旧概念间的联系。

3.通过实践认识事物本质、形成概念

常言说,实践出真知,手是脑的老师。学生通过演示学具,可以理解一些难以讲解的概念。如一年级小学生初学数的大小比较。是用小鸡小鸭学具,一一对比。如一只小鸡对一只小鸭,第二只小鸡对第二只小鸭……直到第六只小鸡没有小鸭对比了,就叫小鸡比小鸭多1只。又如二年级小学生学习“同样多”这个概念也是用学具红花和黄花,学生先摆7朵红花,再摆和红花一样多的7朵黄花,这样就把“同样多”这个数学概念,通过演示(手),思维(脑),形成概念,符合实践、认识,再实践、再认识的规律。这比老师演示、学生看,老师讲解、学生听效果好,印象深、记忆牢。

4.从具体到抽象,揭示概念的本质

在教学中既要注重适应学生以形象思维为主的特点,也要注重培养他们的抽象思维能力。在概念教学中,要善于为学生创造条件,引导他们通过观察、思考、探求概念的含义,沿着由感性认识到理性认识的认知过程掌握概念。这样可以培养学生的逻辑思维能力。如圆周率这个概念比较抽象。一般教师都是让学生通过动手操作认识圆的周长与直径的关系,学生通过观察、思考,分析,很快就发现不管圆的大小如何,每个圆的周长都是直径的3倍多一点。教师指出:“这个倍数是个固定的数,数学上叫做‘圆周率’。这样,引导学生把大量感性材料,加以分析综合,抽象概括抛弃事物非本质东西(如圆的大小,纸板的颜色,测量用的单位等)抓住事物的本质特征(不论圆的大小,周长总是直径的3倍多一点。)形成了概念。

5.用“变式”引导学生理解概念的本质

在学生初步掌握了概念之后,我经常变换概念的叙述方法,让学生从各个侧面来理解概念。概念的表述方式可以是多种多样的。如质数,可以说是“一个自然数除了1和它本身,不再有别的因数,这个数叫做质数”。有时也说成“仅仅是1和它本身两个因数的倍数的数”。学生对各种不同的叙述都能理解,就说明他们对概念的理解是透彻的,是灵活的,不是死背硬记的。有时可以变概念的非本质特征,让学生来辨析,加深他们对本质特征的理解。

6.对近似的概念加以对比

在小学数学中,有些概念的含义接近,但本质属性有区别。例如:数位与位数、体积与容积,减少与减少到等相对应概念,存在许多共同点与内在联系。对这类概念,学生常常容易混淆,必须把它们加以比较,避免互相干扰。比较,主要是找出它们的相同点和不同点,这就要对进行比较的两个概念加以分析,看各有哪些本质特点。然后把它们的共同点和不同点分别找出来,使学生既看到进行比较对象的内在联系,又看到它们的区别。这样,学的概念就会更加明确。对近似的概念经常引导学生进行比较和区分,既能培养学生对易混概念自觉进行比较的习惯,也能提高学生理解概念的能力。多年来我通过教学实践得到的体会有:重视培养学生的比较思想有几点好处:(1)有利于培养学生思维的逻辑性。(2)有利于提高学生分析问题的能力。(3)有利于培养学生系统化的思维方式。

7.教师要帮助学生总结归纳概念的含义

教学中学生的主体地位是必要的,但教师在教学全过程中的主导地位不能忽视。教师应发挥好主导作用。教师与学生的主、客体地位是相互依存的,在一定条件下相互转化。在概念教学中,教师要善于为学生创造条件,让学生沿着观察、思维、理解、表达的过程,由感性到理性的过程,由具体到抽象的过程掌握概念。这样极易调动学生的积极性、主动性,也可以教会学生发现真理。比如我教质数,合数两个概念。我先板书几个数:1、2、3、4、5、6、8、9、11、12,让同学分别写出每个数的因数来。为了便于学生观察,有意识地作如下排列,学生写出下列答案:

1——12——1、26——1、2、3、63——1、34——1、2、45——1、58——1、2、4、811——1、119——1、3、912——1、2、3、4、6、12

订正后,让学生仔细观察,找自然数的因数规律,学生观察后发现了规律。有的说有三种规律,有的则认为有四种情况。我表扬同学观察分析得好。是三种规律。于是又启发他们看是哪三种?①一个自然数只有一个因数;②一个自然数有两个因数;③一个自然数有三个以上因数。在这个情况下,我再次启发:一个因数的是什么样的数?两个的是什么样的数?三个以上又是什么样的因数?学生则发现一个的只有1;两个的则有1还有它本身;三个以上的则有1、自己本身、还有其他因数。最后老师一一肯定,并由学生看书后总结出质数、合数概念,这时学生很受鼓舞,认为自己发现了真理。对质数、合数的概念印象极为深刻。我又有意识地让学生研究“1”到底算哪类?学生沉默了,我说:“从书上找找是怎么说的?知道的就发言。”通过学生的口,说出“1”既不是质数,也不是合数。我问:“为什么?”学生答:因为“1”的因数只占一条,算1就没有本身,算本身又没有“1”,这样可比老师直接告诉、或叮咛他们注意主动。让学生在教师的帮助下,把大量感性材料经过分析综合,抽象概括。抛弃事物和现象的非本质的东西,抓住事物和现象的本质特征形成概念。因为是学生付出了脑力劳动而获得的,所以容易理解,记忆也牢固。

二、有效巩固概念

教学中不仅要求学生理解概念,而且还要使学生熟记并灵活地运用概念。我认为概念的记忆与运用是相辅相成的。因此在教学中,加强练习,及时复习并做归纳整理,对巩固概念具有特殊意义。

1.学过的概念要归纳整理才能系统巩固

学完一个阶段以后,引导学生把学过的概念进行归类整理,明确概念间的联系与区别,从而使学生掌握完整的概念体系。如学生学了“比”的全部知识后,我帮助他们归纳整理了什么叫比;比和除法、分数的关系;比的基本性质,利用比的基本性质,可以化简比;这一系列知识复习清楚之后,才能很好地解决求比例尺三种类型题和比例分配的实际问题。只有把比的意义理解得一清二楚,才能继续学习比例。表示两个比相等的式子叫做比例。这样做就构成了一个概念体系,既便于理解,又便于记忆。概念学得扎扎实实,应用概念才会顺利解决实际问题。

2.通过实际应用,巩固概念

学习的目的是为了解决实际问题,而通过解决实际问题,势必加深对基本概念的理解。如学生学了小数的意义之后,我就让学生利用课外时间,到商店了解几种商品的价钱,写在作业本上,第二天让他们在课上向大家汇报。通过了解的过程,非常自然地对小数的意义,读、写法得以运用与理解。又如学了各种平面图形后,我让学生回家后,观察家里哪些地方有这些平面图形。这种形式的作业让学生感到新鲜,有趣。这不仅巩固了所学概念,还提高了学生运用数学概念解决实际问题的能力。

3.综合运用概念,不仅巩固概念,而且检验概念的理解情况

在学生形成正确的数学概念之后,进一步设计不同形式的概念练习题,让学生综合运用、灵活思考、达到巩固概念的目的,这也是培养检查学生判断能力的一种良好的练习形式。这种题目灵活、灵巧,能考查多方面的数学知识,是近年来巩固数学概念的一种很好的练习内容。

小学数学教学基本概念篇4

【关键词】小学数学概念教学

小学生正处在逻辑抽象思维形成的阶段上,要使他们全面、正确的理解数学概念,就应该灵活采取各种教学方法。教育应该走进小学生思维空间,用适合小学生本身的语言把概念重新展现在他们面前。概念教学对于数学学科尤其重要。不明概念,无法学习数学。那么,何为“概念”?概念又称“涵义”,它是人类思维的细胞。各种能力都是以概念为基础。何谓“数学概念”?数学概念间客观实际中数量关系和空间形式的基本属性在大脑中的反应,是形成数学能力的基础。为学习数学。如运算、逻辑思维、空间想象能力、创新能力等打下基础。根据本人多年的教学经验,把数学概念教学的方法小结如下:

1利用直观教学法,补充并深化数学概念

由于小学生认识程度的限制,在教材中部分概念没有下准确的定义,但是这些概念对于解决实际数学问题又是非常重要的。因此,这就给教者留下了一项非常艰巨的任务。在概念教学难以入手时,不妨尝试利用直观的具体形象,帮助学生认识概念的本质属性。

对于太难理解的概念就可以暂时不给定义或者采用阶段逐步渗透的办法。对于小学生来说,数学概念还是抽象的,他们形成数学概念,一般都要有相应的感性经验为基础,而且要经历一番把感性材料在脑子里来回往复。从模糊到逐渐分明,从许多有一定联系的材料中,通过自己操作,思维活动逐步建立起事物的一般表象。在教学中,更要加强演示,操作。让学生通过摸一摸,摆一摆,拼一拼来让学生体会这些概念,理解概念和掌握概念。

2结合生活,从实际中进行概念引入

数学来自现实生活,小学生生活周围处处有数学,结合生活实际引入概念是一个有效的途径。小学生从瓣手指到简单的运用计算机,都是在生活中不断总结而学习获得的。要从生活实际出发,深化小学生的概念基础,就必须熟悉小学生的生活环境。

3化抽象为具体,强化数学概念

在教学中有很多数量关系都是从具体生活中表现出来的,因此,在教学中要充分利用学生的生活实际,运用恰当的方式进行具体与抽象的连贯。把抽象的内容转变成具体的生活知识,在学生思维过程中强化抽象概念。

总之,从概念引入深化的教学方式是多种多样的,教师可以根据教学内容,让学生在实际生活中引入——理解——巩固——深化的途径形成概念。并通过不断做练习来巩固新概念。同时,我们不能忽视纠正小学生不正确的学习概念的方法。

4纠正错误的学习概念方法

在目前小学生学习过程中,出现了很多错误的学习概念方法,导致学习效率低下,影响了进一步学习的兴趣及信心,主要表现一下几点:

4.1概念与应用脱节。在概念学习中有两种错误倾向:①部分同学为学习概念而学习,缺少应用环节,很少做一些相关的练习;②一部分同学恰恰相反,很喜欢解题,然而为解题而解题,在解题过程中对习题涉及的概念很少关注,更无从去复习、巩固相应概念。其实,这两种错误的本质是一样的,就是漠视了概念的应用环节,想当然地以为概念与应用是两个不同层面的内容。其实,概念和应用是分不开的,要想轻松解题,就必须掌握概念,要掌握概念,就必须多解题、多应用概念。

4.2孤立地学习概念。不少同学学习概念时,总是习惯于一个概念一个概念的去学习,孤立地看待概念,无法将不同概念形成体系,不能在概念系统中学习概念。如此,对概念的理解流于形式及肤浅,学习效果自然大打折扣。

4.3死记硬背。由于概念本身的抽象性,给学习增加了难度,进而不少同学干脆采取“死记硬背”方式。这种方式确实简单,省事,可以节约大量学习时间。然而,这种方式带给人们负面影响却是无法估计的。最直接的消极影响体现在解题方面,由于对概念没有理解,导致解题时“束手无策或困难重重”。其次,由于没有经历概念形成过程,抽象、概括及归纳思维及相应的能力也无法得到发展及提高。

5通过反复练习,帮助学生巩固概念

小学数学教学基本概念篇5

关键词概念课;小学数学

一、小学概念教学中普遍存在的问题

目前,一线教师在概念教学中常常存在以下一些问题:

1.概念教学脱离现实背景

很多教师在上概念课的时候,首先就要求学生把概念强记下来,然后进行大量的强化练习来巩固概念。这种死记硬背的教学方式有着很大的消极影响,由于学生并没有理解概念的真正涵义,一旦遇到实际应用的时候就感到一片茫然。

2.孤立地教学概念

很多教师在教学概念的时候往往习惯于把各个概念分开讲述,这样虽然是课时设置的需要,但是这种教学方式会使得学生掌握的各种数学概念显得零碎,缺乏一定的体系,这不仅给学生理解和应用概念设置了障碍,同时也给概念的记忆增加了难度。

3.数学概念的归纳过于仓促

数学概念的形成,是一个不断建构与解构的反复过程。引导学生准确地理解概念,明确概念的内涵与外延,正确表述概念的本质属性,这是概念教学应该达到的教学目标。而部分教师课堂教学中概念的形成过于仓促,学生尚未建立初步的概念,教师即已迫不及待的进行归纳与总结。

二、小学数学概念课教学的基本策略

1.必须将概念置身于现实背景中去理解

数学概念教学时必须将概念寓于现实社会背景中,让学生通过活动亲身经历、体验数学与现实的联系,从中经历完整的学习过程,用方法组织和建立数学概念,这样建立起来的概念才具有丰富的内涵。心理学研究表明,儿童认识规律是“感知――表象――概念”,而把概念教学置身于现实背景中,能变学生被动地听为主动地学,充分调动学生的各种感官参与教学活动,去感知大量直观形象的事物,获得感性知识,形成知识的表象,并诱发学生积极探索,从事物的表象中概括出事物的本质特征,从而形成科学的概念。

如在教学“平均分”这个概念时,可先让学生把8梨(图片)分成两份,通过分图片,出现四种结果:一人得1个,另一得7个;一人得2个,另一人得6个;一人得3个,另一人得5个;两个人各得4个。然后引导学生观察讨论:第四种分法与前三种分法相比有什么不同?学生通过讨论,知道第四种分法每人分得的个数“同样多”,从而引出了“平均分”的概念。这样通过学生分一分、摆一摆的实践活动,把抽象的数学概念和形象的实物图片有机地结合起来,使概念具体化,使学生悟出“平均分”这一概念的本质特征――每份“同样多”,并形成数学概念。

2.概念的建构需经多次反复

建构主义教学观认为,概念的建构需经多次反复,经历“建构―解构―重构”的过程。

(1)利用多种形式引出概念,激活学生概念建构的兴趣。数学也是一门实验科学,可以通过猜想或实验、游戏或故事、自然现象的例举或蕴含概念的生活实例引出概念。由于学生建构数学概念的形式基本上属于低级阶段,老师一般可不直截了当地给出要建构的概念,这样有助于学生集中注意力,使学生的思维向不同的方向发展

(2)给予学生充分的自由,独立实验、思考、解构的空间。这是概念建构的重要过程,不能在教学中忽略或形式主义地走过场。当学生在头脑中等你老师传递信息时,往往会机械地在头脑中划出一块来将获取的信息原封不动地储存起来,而概念建构的正确导向应该将信息与原来的知识结构和实验结构相互发生作用。在充分的自由实验中,去发现、感悟、提炼出新信息。在充分实验思维碰撞的过程中逐渐缩小原有知识结构与概念本身的差距,在建立新概念结构的同时,建立新的知识结构。

(3)在交流讨论中,多向完善概念的重构。交流、讨论是学生进行数学概念建构的最重要的过程,一个班集体是以学生个体为主所组成的。每个学生在学习数学概念之前头脑中总会或多或少地存在着相关的知识和相关的生活经历与实践经验。学生个体生活的外部环境和社会环境是相通的。可能有的学生了解或掌握的是与这个数学概念相关的直接经验和知识,有的则是简接的知识,甚至有的学生与概念相关的知识与经验一点也不具备。作为一个数学概念,它不是像语言所表达那样抽象,其内涵是丰富的,要想对其进行全方位的建构,就必须从多角度、多层次进行理解把握,直到建出结构。

3.重视概念在生活中的应用

小学数学教学基本概念篇6

一、正确理解数学概念是掌握数学基本知识和基本技能的基石

概念反映的是事物的本质属性,我们要识知某个事物,必须首先弄清这个事物的本质属性,否则就无法正确地认识事物。数学概念是现实世界中有关数量关系和空间形式的本质属性在人的大脑中的反映。

小学数学教材中的数学概念是一个完整的相对稳定的数学概念体系,在小学数学教材中占有极其重要地位。这些数学概念既是最基本的数学知识,又是学生学习有关法则、性质、定律的基础知识,还是学生计算能力提高,空间观念形成,思维能力发展的前提和重要保证。学习数学的过程就是一个不断运用数学概念进行比较、分析、综合、概括、判断、推理的思维过程。数学概念的教学是数学教学的核心,我们要想使学生真正学懂数学、掌握数学,并能正确地运用数学解决实际问题,必须重视概念教学,充分认识到概念教学的重要意义。

二、小学数学概念教学中存在的问题

1.只重视计算教学,而不重视概念教学,把注意力和精力过多地投入到了计算教学上,在讲概念时一带而过,不注意讲懂、讲透,让学生真正理解概念。

2.比较忽视概念的形成。将学生要探索的概念知识全盘托出,要求学生死记硬背,学生只知其然而不知其所以然,记得快也忘得快。

3.忽略了概念间的联系。学习某个概念,不注意联系相关联的概念,将许多有联系的概念孤立地保留在学生的头脑中,达不到概念间的沟通,不能组成概念系统,形成认知网络。在探索交流中形成概念。

三、小学数学概念教学中应注意的问题

1.以感性材料为基础引入新概念

用学生在日常生活中所接触到的事物或教材中的实际问题以及模型、图形、图表等作为感性材料,引导学生通过观察、分析、比较、归纳和概括去获取概念。

例如,要学习“平行线”的概念,可以让学生辨认一些熟悉的实例,像铁轨、门框的上下两条边、黑板的上下边缘等,然后分化出各例的属性,从中找出共同的本质属性。铁轨有属性:是铁制的、可以看成是两条直线、在同一个平面内、两条边可以无限延长、永不相交等。同样可分析出门框和黑板上下边的属性。通过比较可以发现,它们的共同属性是:可以抽象地看成两条直线;两条直线在同一平面内;彼此间距离处处相等;两条直线没有公共点等,最后抽象出本质属性,得到平行线的定义。

2.把握概念教学的目标,处理好概念教学的发展性与阶段性之间的矛盾

概念本身有自己严密的逻辑体系。在一定条件下,一个概念的内涵和外延是固定不变的,这是概念的确定性。由于客观事物的不断发展和变化,同时也由于人们认识的不断深化,因此,作为人们反映客观事物本质属性的概念,也是在不断发展和变化的。但是,在小学阶段的概念教学,考虑到小学生的接受能力,往往是分阶段进行的。因此,数学概念的系统性和发展性与概念教学的阶段性成了教学中需要解决的一对矛盾。解决这一矛盾的关键是要切实把握概念教学的阶段性目标。

3.注意及时复习

概念的巩固是在对概念的理解和应用中去完成和实现的,同时还必须及时复习,巩固离不开必要的复习。复习的方式可以是对个别概念进行复述,也可以通过解决问题去复习概念,而更多地则是在概念体系中去复习概念。当概念教学到一定阶段时,特别是在章节末复习、期末复习和毕业总复习时,要重视对所学概念的整理和系统化,从纵向和横向找出各概念之间的关系,形成概念体系。

4.重视应用

在概念教学中,既要引导学生由具体到抽象,形成概念,又要让学生由抽象到具体,运用概念,学生是否牢固地掌握了某个概念,不仅在于能否说出这个概念的名称和背诵概念的定义,而且还在于能否正确灵活地应用,通过应用可以加深理解,增强记忆,提高数学的应用意识。

你会喜欢下面的文章?

    美丽校园的演讲稿范文(整理8篇)

    - 阅0

    美丽校园的演讲稿篇1尊敬的各位老师,亲爱的同学们:大家上午好!今天我国旗下讲话的主题是”把美丽带进校园“。走在校园里,看见地上的一片纸屑,你是视而不见,还是弯腰捡起?在食堂.....

    植树节的作文范文(整理16篇)

    - 阅0

    植树节的作文范文篇1今天是植树节,阳光灿烂,老师安排我们一起去植树,我们开开心心地拿起水桶,抗起铁铲,带上树苗地去植树了。我们兴高采烈地来到路边,我和小明一组,我挖坑,小明提水.....

    关于少用手机的倡议书范文(精选4篇

    - 阅0

    少用手机的倡议书篇1亲爱的家长们、同学们:你们好!为了促进学生身心健康成长,切实加强儿童青少年近视防控,做好预防小学生沉迷网络教育引导工作,规范学生日常行为管理,营造良好的.....

    2018年社区119消防宣传日活动方案

    - 阅0

    社区11·9消防宣传日活动实施方案一:篇1今年11月9日是我省第19个消防日,又正是“清剿火患”战役紧张开展之际,致力提升“全民消防,生命至上”的理念,普及全民消防安全知识,提高.....