生物医学工程前景分析(整理2篇)

来源:

生物医学工程前景分析范文篇1

论文摘要:目前应用于生物医学中的纳米材料的主要类型有纳米碳材料、纳米高分子材料、纳米复合材料等。纳米材料在生物医学的许多方面都有广泛的应用前景。

1应用于生物医学中的纳米材料的主要类型及其特性

1.1纳米碳材料

纳米碳材料主要包括碳纳米管、气相生长碳纤维也称为纳米碳纤维、类金刚石碳等。

碳纳米管有独特的孔状结构[1],利用这一结构特性,将药物储存在碳纳米管中并通过一定的机制激发药物的释放,使可控药物变为现实。此外,碳纳米管还可用于复合材料的增强剂、电子探针(如观察蛋白质结构的afm探针等)或显示针尖和场发射。纳米碳纤维通常是以过渡金属fe、co、ni及其合金为催化剂,以低碳烃类化合物为碳源,氢气为载体,在873k~1473k的温度下生成,具有超常特性和良好的生物相溶性,在医学领域中有广泛的应用前景。类金刚石碳(简称dlc)是一种具有大量金刚石结构c—c键的碳氢聚合物,可以通过等离子体或离子束技术沉积在物体的表面形成纳米结构的薄膜,具有优秀的生物相溶性,尤其是血液相溶性。资料报道,与其他材料相比,类金刚石碳表面对纤维蛋白原的吸附程度降低,对白蛋白的吸附增强,血管内膜增生减少,因而类金刚石碳薄膜在心血管临床医学方面有重要的应用价值。

1.2纳米高分子材料

纳米高分子材料,也称高分子纳米微粒或高分子超微粒,粒径尺度在1nm~1000nm范围。这种粒子具有胶体性、稳定性和优异的吸附性能,可用于药物、基因传递和药物控释载体,以及免疫分析、介入性诊疗等方面。

1.3纳米复合材料

目前,研究和开发无机—无机、有机—无机、有机—有机及生物活性—非生物活性的纳米结构复合材料是获得性能优异的新一代功能复合材料的新途径,并逐步向智能化方向发展,在光、热、磁、力、声[2]等方面具有奇异的特性,因而在组织修复和移植等许多方面具有广阔的应用前景。国外已制备出纳米zro2增韧的氧化铝复合材料,用这种材料制成的人工髋骨和膝盖植入物的寿命可达30年之久[3]。研究表明,纳米羟基磷灰石胶原材料也是一种构建组织工程骨较好的支架材料[4]。此外,纳米羟基磷灰石粒子制成纳米抗癌药,还可杀死癌细胞,有效抑制肿瘤生长,而对正常细胞组织丝毫无损,这一研究成果引起国际的关注。北京医科大学等权威机构通过生物学试验证明,这种粒子可杀死人的肺癌、肝癌、食道癌等多种肿瘤细胞。

此外,在临床医学中,具有较高应用价值的还有纳米陶瓷材料,微乳液等等。

2纳米材料在生物医学应用中的前景

2.1用纳米材料进行细胞分离

利用纳米复合体性能稳定,一般不与胶体溶液和生物溶液反应的特性进行细胞分离在医疗临床诊断上有广阔的应用前景。20世纪80年代后,人们便将纳米sio2包覆粒子均匀分散到含有多种细胞的聚乙烯吡咯烷酮胶体溶液中,使所需要的细胞很快分离出来。目前,生物芯片材料已成功运用于单细胞分离、基因突变分析、基因扩增与免疫分析(如在癌症等临床诊断中作为细胞内部信号的传感器[5])。伦敦的儿科医院、挪威工科大学和美国喷气推进研究所利用纳米磁性粒子成功地进行了人体骨骼液中癌细胞的分离来治疗病患者[6]。美国科学家正在研究用这种技术在肿瘤早期的血液中检查癌细胞,实现癌症的早期诊断和治疗。

2.2用纳米材料进行细胞内部染色

比利时的demey博士等人利用乙醚的黄磷饱和溶液、抗坏血酸或柠檬酸钠把金从氯化金酸(haucl4)水溶液中还原出来形成金纳米粒子,(粒径的尺寸范围是3nm~40nm),将金纳米粒子与预先精制的抗体或单克隆抗体混合,利用不同抗体对细胞和骨骼内组织的敏感程度和亲和力的差异,选择抗体种类,制成多种金纳米粒子—抗体复合物。借助复合粒子分别与细胞内各种器官和骨骼系统结合而形成的复合物,在白光或单色光照射下呈现某种特征颜色(如10nm的金粒子在光学显微镜下呈红色),从而给各种组织“贴上”了不同颜色的标签,为提高细胞内组织分辨率提供了各种急需的染色技术。

2.3纳米材料在医药方面的应用

2.3.1纳米粒子用作药物载体

一般来说,血液中红血球的大小为6000nm~9000nm,一般细菌的长度为2000nm~3000nm[7],引起人体发病的病毒尺寸为80nm~100nm,而纳米包覆体尺寸约30nm[8],细胞尺寸更大,因而可利用纳米微粒制成特殊药物载体或新型抗体进行局部的定向治疗等。专利和文献资料的统计分析表明,作为药物载体的材料主要有金属纳米颗粒、无机非金属纳米颗粒、生物降解性高分子纳米颗粒和生物活性纳米颗粒。

磁性纳米颗粒作为药物载体,在外磁场的引导下集中于病患部位,进行定位病变治疗,利于提高药效,减少副作用。如采用金纳米颗粒制成金溶液,接上抗原或抗体,就能进行免疫学的间接凝聚实验,用于快速诊断[9]。生物降解性高分子纳米材料作为药物载体还可以植入到人体的某些特定组织部位,如子宫、阴道、口(颊、舌、齿)、上下呼吸道(鼻、肺)、肛门以及眼、耳等[10]。这种给药方式避免了药物直接被消化系统和肝脏分解而代谢掉,并防止药物对全身的作用。如美国麻省理工学院的科学家已研制成以用生物降解性聚乳酸(pla)制的微芯片为基础,能长时间配选精确剂量药物的药物投送系统,并已被批准用于人体。近年来生物可降解性高分子纳米粒子(nps)在基因治疗中的dna载体以及半衰期较短的大分子药物如蛋白质、多肽、基因等活性物质的口服释放载体方面具有广阔的应用前景。药物纳米载体技术将给恶性肿瘤、糖尿病和老年痴呆症的治疗带来变革。

2.3.2纳米抗菌药及创伤敷料

ag+可使细胞膜上蛋白失去活性从而杀死细菌,添加纳米银粒子制成的医用敷料对诸如黄色葡萄球菌、大肠杆菌、绿浓杆菌等临床常见的40余种外科感染细菌有较好抑制作用。

2.3.3智能—靶向药物

在超临界高压下细胞会“变软”,而纳米生化材料微小易渗透,使医药家能改变细胞基因,因而纳米生化材料最有前景的应用是基因药物的开发。德国柏林医疗中心将铁氧体纳米粒子用葡萄糖分子包裹,在水中溶解后注入肿瘤部位,使癌细胞部位完全被磁场封闭,通电加热时温度达到47℃,慢慢杀死癌细胞。这种方法已在老鼠身上进行的实验中获得了初步成功[11]。美国密歇根大学正在研制一种仅20nm的微型智能炸弹,能够通过识别癌细胞化学特征攻击癌细胞,甚至可钻入单个细胞内将它炸毁。

2.4纳米材料用于介入性诊疗

日本科学家利用纳米材料,开发出一种可测人或动物体内物质的新技术。科研人员使用的是一种纳米级微粒子,它可以同人或动物体内的物质反应产生光,研究人员用深入血管的光导纤维来检测反应所产生的光,经光谱分析就可以了解是何种物质及其特性和状态,初步实验已成功地检测出放进溶液中的神经传达物质乙酰胆碱。利用这一技术可以辨别身体内物质的特性,可以用来检测神经传递信号物质和测量人体内的血糖值及表示身体疲劳程度的乳酸值,并有助于糖尿病的诊断和治疗。

2.5纳米材料在人体组织方面的应用

纳米材料在生物医学领域的应用相当广泛,除上面所述内容外还有如基因治疗、细胞移植、人造皮肤和血管以及实现人工移植动物器官的可能。

目前,首次提出纳米医学的科学家之一詹姆斯贝克和他的同事已研制出一种树形分子的多聚物作为dna导入细胞的有效载体,在大鼠实验中已取得初步成效,为基因治疗提供了一种更微观的新思路。

纳米生物学的设想,是在纳米尺度上应用生物学原理,发现新现象,研制可编程的分子机器人,也称纳米机器人。纳米机器人是纳米生物学中最具有诱惑力的内容,第一代纳米机器人是生物系统和机械系统的有机结合体,这种纳米机器人可注入人体血管内,进行健康检查和疾病治疗(疏通脑血管中的血栓,清除心脏脂肪沉积物,吞噬病菌,杀死癌细胞,监视体内的病变等)[12];还可以用来进行人体器官的修复工作,比如作整容手术、从基因中除去有害的dna,或把正常的dna安装在基因中,使机体正常运行或使引起癌症的dna突变发生逆转从而延长人的寿命。将由硅晶片制成的存储器(rom)微型设备植入大脑中,与神经通路相连,可用以治疗帕金森氏症或其他神经性疾病。第二代纳米机器人是直接从原子或分子装配成具有特定功能的纳米尺度的分子装置,可以用其吞噬病毒,杀死癌细胞。第三代纳米机器人将包含有纳米计算机,是一种可以进行人机对话的装置。这种纳米机器人一旦问世将彻底改变人类的劳动和生活方式。

瑞典正在用多层聚合物和黄金制成医用微型机器人,目前实验已进入能让机器人捡起和移动肉眼看不见的玻璃珠的阶段[13]。

纳米材料所展示出的优异性能预示着它在生物医学工程领域,尤其在组织工程支架、人工器官材料、介入性诊疗器械、控制释放药物载体、血液净化、生物大分子分离等众多方面具有广泛的和诱人的应用前景。随着纳米技术在医学领域中的应用,临床医疗将变得节奏更快,效率更高,诊断检查更准确,治疗更有效。

参考文献

[1]philippep,nangzletal.science,1999,283:1513

[2]孙晓丽等.材料科学与工艺,2002,(4):436-441

[3]赖高惠编译.化工新型材料,2002,(5):40

[4]苗宗宁等.实用临床医药杂志,2003,(3):212-214

[5]崔大祥等.中国科学学院院刊,2003,(1):20-24

[6]顾宁,付德刚等.纳米技术与应用.北京:人民邮电出版社,2002:131-133

[7]胥保华等.生物医学工程学杂志,2004,(2):333-336

[8]张立德,牟季美.纳米材料和结构.北京:科学出版社,2001:510

[9]刘新云.安徽化工,2002,(5):27-29

[10]姚康德,成国祥.智能材料.北京:化学工业出版社,2002:71

[11]李沐纯等.中国现代医学杂志,2003,13:140-141

生物医学工程前景分析范文篇2

关键词:生物信息学;医学相关专业;教学;临床应用

中图分类号:G642.0文献标志码:A文章编号:1674-9324(2017)23-0146-02

一、前言

生物信息学(Bioinformatics)是随着现代生命科学的发展而兴起的交叉学科,旨在为生物学研究提供信息处理的支撑,从海量数据中挖掘生物信息,实现对生命科学问题的研究。生物信息学包含了对核酸和蛋白质的序列和结构信息的获取、处理、存储、分布、分析和解释等各个方面的分析研究,是通过综合利用生物学、计算机科学和信息技术等手段,来认识生命的起源、进化、遗传和发育的本质,揭示海量数据中蕴含的生命奥秘或生物学内在规律的一门科学[1]。随着测序技术的不断发展,人类与其他物种基因组计划相继实施和完成,产生了海量的数据,尤其是近年来的各种组学数据,如蛋白质组、代谢组、基因组、转录组等生物学数据,生物信息学将在解读基因组序列中的功能信息等方面发挥巨大的作用[2]。

二、生物信息学课程开展的现状

生命科学的迅猛发展、生物技术在社会发展中的应用越来越广泛,例如产前诊断、遗传并筛查、肿瘤靶向治疗等生物信息学相关的医学应用,生物信息学的作用和地位也越来越重要。研究机构和高等院校,特别是息息相关的医学院校,迫切需要通过各种形式的教学,系统地培养新的复合型研究力量的医学工作者。因此,医学院校针对医学相关学生开展与其专业紧密结合的生物信息学课程已经成为必然趋势[3]。目前,国内许多医学院校相继开设了生物信息学课程,将生物信息学作为必修或者选修课程。由于生物信息课程教学尚处于刚刚起步的探索阶段,尚未形成一个完整的课程建设体系,再加上生物信息学研究的范围广、相关数据与分析工具资源繁多、涉及多学科知识尚缺乏系统成熟的理论方法,正处在迅速发展中等一系列特点,如何开展生物信息学教学尚有待探索。因此,生物信息学课程的教育理念、教学内容、方式和方法等迫切需要根据自身专业特点,科学确立教学目标,及时系统地总结规划教学内容,探索和改革教学方法,以适应医学专业背景学生的学习,对于促进医学生自身综合素质的提高有重要意义。本文结合南京医科大学本科学生(主要为医学相关专业学生,非生物信息学专业学生)开展的生物信息学课程进行调研和改进,对该课程的学生的反馈意见及各教研室教师的建议进行了深入分析。本着以学生需要为原则,针对学生的专业背景,适当调整教学内容和方法,理论教学与上机实践有机结合,侧重将生物信息学的思维融入解决生物医学的问题,行成一套完整的、合理可行的医学生物信息学课程理论、实验教学方案。进而达到专业与课程相结合,激发学生的学习兴趣,从而达到较好的教学效果。

三、教学内容及方法的具体实践

(一)针对医学专业学生,优化教学内容

生物信息学作为一门发展迅猛的多学科交叉的前沿学科,理论、研究方法、研究内容尚在不断完善和更新中,其内容繁多复杂,更需要进行精心的选择裁剪和编排组织,才能在有限的时间内实现既定的教学目标,使学生学习到有用的知识。教学中应充分结合当前研究前沿和进展、时刻更新教学内容,更应该根据学生的不同专业背景适当调整教学内容和教学方法。在医学院校中,更要针对不同专业及背景的学生,制订具有专业特色的教学大纲。教学应以学生的需求为前提,结合不同专业背景、就业选择方向,调整培养方案和优化授课内容,以满足他们的需求,使学生能够学有所用。比如,针对临床专业的学生,生物信息学教学应该偏重医学研究中的方法和成果,本科教学注重转化医学、生物技术应用成果的普及,研究生教学注重利用生物信息手段和方法解决科研学习中遇到的实际问题;而针对法医专业的学生,教学应该偏重新一代高通量测序技术的原理、数据分析、结果意义等方面。针对目前医学院校中研究方向多元化的背景,强调教学与科研共促进,通过科研时刻关注、追踪学科前沿,将最新的研究成果和在医学上的应用展示给学生,丰富教育资源,使学生能在其他课程的学习时学以致用,从而高质量的完成教学任务。生物信息学亦是众多科学研究工作中强有力的必不可少的研究手段,教学反过来也可促进科研的进一步开展和深入。因此,教学和科研相结合,可以拓宽知识面,全面了解生物信息学和相关学科最新进展,不断为科研提供新的思路,不断的完善生物信息学教学体系。只有坚持教学与科研同时进行、并紧跟科学前沿,并做到及时纳入最新的研究成果,更新教学内容,才能给予学生高质量的前沿教学[4]。

(二)基于计算机的实验教学,锻炼动手能力

在生物信息学教学中,计算机实践教学是不可缺少的部分,理论和实践的有机结合才能达到更好的教学效果。只有亲自动手进行生物数据的分析,学生才能建立一个感官的、多方面的认识。优化上机内容、改进上机教学方法,使得理论知识在上机教学中可以得到实现,实际操作充分理解理论课内容,由此激发学生动手实践的激情和信心,更好地掌握知识。所以在生物信息的教学中,上机实验课程应该占据较大的比例,并通过生动的课堂练习培养学生的兴趣。实验课内容的设计应该考虑医学相关专业学生的背景,根据医学问题作为出发点,以如何解决这些问题作为主线设计课程。所以,通过了解当前医生常用的科研手段或当前医院正在开展的临床检测项目,设计相关实验课程、增加应用性实践教学,并结合最新研究成果和基础到临床应用的实例、以及项目原理及优缺点,可以调动学生学习的主动性。例如,针对临床专业开展常用的生存分析的原理和分析流程的实践教学;针对法医专业,开展常用的STR(短串联重复序列)作为亲权鉴定标志物的序列特点和可视化的教学等。另外,生物信息学本身是多学科交叉融合,知识面广而杂,其相关数据库资源,以及生物信息学工具、算法和软件等均更新迅速。在理论教学中,授课教师时刻密切关注学科发展前沿、并将最新研究成果及学术发展动态,而在实验课授课中,更应该注重教会学生,充分利用互联网资源,独立开展课题、综合分析、解决问题。例如,榱耸寡生了解当前网络数据共享的环境下,如何从网上搜索网络资源、下载数据,我们下载了多种不同类型的数据,包括测序数据、芯片数据、注释数据等,然后再从实际数据出发上机操作,介绍分析的方法和工具。

四、生物信息在医学相关专业的应用

基础科研成果的积累逐渐带来了临床应用的突破,而生物信息学的技术和数据在临床应用的重要性也愈加重要。目前,医疗上的应用主要有生育健康、遗传病检测、传染病药物研发、肿瘤诊断及治疗等几大方面[5]。2014年7月国家卫生计生委承认基因测序技术在产前诊断的应用,批准了基因测序诊断产品的上市,2015年3月27日,国家卫生计生委医政医管局又通过了第一批肿瘤诊断与治疗项目高通量基因测序技g临床试点单位。一些大型医院已经把基因诊断作为患者必需的诊断项目,特别是产前无创诊断,很多医院也正在筹建基因检测中心。目前国内每年新增癌症患者300万人左右,且发病率呈上涨趋势,肿瘤的基因检测和靶向治疗已经成为提高肿瘤治疗效果的一条重要途径。产前诊断和精准医疗的飞速发展所带来的巨大临床应用,亟需懂临床一线的医生了解前沿科技、懂生物信息、会临床应用。根据市场反馈的情况,未来基因检测在临床上应用所占比例会越来越大,医学工作者对生物信息知识的需求也越来越高。

五、结语

当前生物信息学与医学的联系越来越紧密,应用也越来越广泛。为此,我们需要为医学相关专业学生开设生物信息学课程,而课程的设置中不但需要教师掌握较高的生物信息学知识,更需要结合学生的不同专业背景进行其专业领域的应用实践教学。一方面扩大学生的知识面、紧跟科学技术前沿,了解生物信息学在当前临床诊断和治疗中的应用,另一方面提高学生的实践分析能力,只有这样才能使得临床和科研相结合,互相促进,推动进步。

参考文献:

[1]NIH生物信息学定义委员会.NIHworkingdefinitionofbioinformaticsandcomputationalbiology[EB/OL].2000-7-17/2008-517.

[2]Reuter,J.A.,etal.High-throughputsequencingtechnologies.MolCell2015,58(4):586-597.

[3]赵方庆,方向东,李亦学.转化生物信息学研究前沿及挑战[J].遗传,2015,37(7):619-620.

[4]郭丽,赵杨,柏建岭,于浩,陈峰.医学院校生物统计学专业生物信息学教学探索[J].南京医科大学学报,2013,13(5):101-104.

[5]田李,张颖,赵云峰.新一代测序技术的发展和应用[J].生物技术通报,2015,31(11):1-8

ResearchofBioinformaticsTeachinginMedicalRelatedMajors

LIYan,ZHAOXiao-jie

(SchoolofBasicMedicalSciences,NanjingMedicalUniversity,Nanjing,Jiangsu211166,China)

你会喜欢下面的文章?