煤化工废水处理方法范例(3篇)

来源:其他

煤化工废水处理方法范文

关键词:煤化工;排污;废水处理;新方法

DOI:10.16640/ki.37-1222/t.2017.14.007

当前,国内对于煤化工废水的处理更多的是应用生化方法,通过生物分解对其中的苯类、苯酚类等污染物进行降解,不过也有一定的技术限制,比如对其中的吡啶、咔唑类物质就很难有效分解。调查发现,许多煤化工企业对废水的处理结果并没有满足国家一级标准,不管是废水的浓度是颜色都存在问题,所以,在污水处理过程中要尽可能的减少其CODCr的含量,对氨气、氮气等也要尽量降解,使得处理后的污水达到国家标准。

1煤化工废水概述

煤化工废水,是在煤化工生产过程中所产出的有着较多污染物质的废水,其中包含着许多的有毒物质,比如:含氮、苯酚等污染物。调查发现,煤化工废水中的氨氮有200~500mg/L,CODCr物质则有5000mg/L,而且其中还有着一定的有机物质,比如:环芳香族化合物,硫化物等,这类物质想要通过自然降解来处理难以取得好的效果,而且有机物的过多排放会造成水流的富营养现象,造成生态平衡的破坏。通过生物方法的降解,只会将萘、吡咯等进行分解,对入咔唑、联苯类等的处理效果并不好。

2煤化工废水的处理方法

煤化工污水在排出之前,都必须经过净化分解,一般来说对废水首先采取的是物化预处理,气浮、隔油就是其中使用较多的方法。气浮法,是将污水中的油类等物质进行隔离处理,将浮在上部的油类进行处理并尽可能的回收,该种处理方法能够有效防止污水中的油类对自然水环境的污染,而且还能对曝气进行必要的处理。当前,大部分的煤化工企业更多的是应用缺氧、好氧生物的去污方法,也被称作A/O方法。因为,好氧生物在对废水中的污染物进行处理的过程中并不能有效发挥其除污性能,对其中包含的杂环类物质就很难有效分解。所以,面对当前大部分煤化工企业在废水处理中的缺陷,必须创新发展废水处理方法,比如应用PACT法、厌氧生物法等对污染物进行有效处理。

3好氧生物法

应用好氧生物法对煤化工生产过程中产生的污水进行处理,主要有:PACT法、载体流动床生物膜法。前者主要是应用活性炭等对污水中的有害物进行吸附处理,因为活性炭这一物质的吸附力非常强,能够为好氧生物储存足够的食物来源,而且,好氧生物还能提高其分解性能。这一方法的主要特点是,活性炭能够循环往复使用,利用湿空气氧化法能够使得活性炭再生。

载体流动床生物膜法,也被称作CBR,它是一种利用特定的结构形式的流动床方法,将产生的污水在选择的生物单元内过滤处理,其中所包含的生物膜、活性泥等进行有机的结合,将膜内的填充成分再次投入到污泥池之中,而且在其表层会产生呈现出漂浮形式的微生物,并对废水表层进行生物膜的附着处理。这一技术对于生物活性的组成以及浓度的要求比例相对较高,多数情况下要接近于标准值的两到四倍,最大可接近8-12g/L,而且也进一步的提升了对废水的分解效率。

4厌氧生物法

厌氧生物法,也被称作UASB方法,对于所排放污水的分解是依靠着污泥床技术来实现的,该方法是要利用特定的水质反应器皿,来构建一套固、液、气分割系统,其底层是构建在污水反应器上,污水经过管径进到污水反应器之中,而且经过加压的方法从下至上的进行一步步的分解处理。其中所包含的厌氧生物将污水中的有害成分进行转化处理,将甲烷、二氧化碳等排放,而且进到上层的三相分离器具之内。这一技术能够有效的处理污水中的杂环类等有害物质,使得污水获得进一步的处理。

5煤化工废水的深度降解技术

经过以上方法的处理,是对煤化工污水的初步过滤分解,其中的CODcr浓度已是显著的降低了,不过污水中仍然含有大量难以处理的有害物存在,其浑浊度仍然非常高,其处理标准仍未满足国家排污要求。所以,经过初步处理之后还要进行深度分解处理,主要运用到的技术有以下几种:

5.1固定化生物技术

该技术对废水的降解有着非常强的针对性,能够对其中的特定种类的菌类进行定性处理,使其对污水中的有害物质进行针对性的处理,特别是对吡啶等有着非常好的处理效果,实践证明,该技术对污水中某些很难得到分解的物质的处理效果有着显著的改善。

5.2高级氧化技术

一般来说,对煤化工污水中所包含的有机物的处理是一个极为复杂的过程,其中大部分的构成是酚类,多环芳烃以及含氮有机物等,对这些物质的降解处理难度非常大,在对污水进行初级处理之后,效果并不明显。而这里提到的高级氧化技术,可以对其中所包含的各类有机物进行深度的分解处理,将水中的HO离子,与其中的有机物自动的结合,并产生水和二氧化碳。同时,还能运用催化法来加以辅助,从而增强水中离子联合的效果。在初期的处理过程中,也能够应用到这一方法,可以有效的分解污水中的COD成分,但因为初期对催化剂的使用过多等问题,要求较高的经济成本,所以这一技术还是主要用在对废水的二次处理过程之中。

6结语

随着国内经济的迅速发展,对能源的损耗、环境的污染越来越严重,人们对环境保护的关注度也是越来越高,许多新的污染处理方法得以应用,对于煤化工的污水处理来说,许多企业都已构建起有效的污水处理系统,当然想要取得更佳的处理效果,还需要投入更多的人力、物力,加强对新技术、新工艺的研发,从企业发展与社会和谐两方面综合考量。

参考文献:

[1]张占梅,付婷.煤制气废水处理技术研究进展综述[J].环境科学与管理,2014(10).

[2]李培艳.煤化工污水处理技术进展[J].化工管理,2013(22).

煤化工废水处理方法范文

[关键词]煤化工;高盐废水;结晶盐;综合利用;产品标准

现代煤化工产业正发展成为我国煤炭清洁高效利用的重要新生力量,对保障我国能源安全、优化能源结构、改善环境质量形成有力补充。然而水资源与水环境容量的双重匮乏一直困扰着现代煤化工产业的发展[1]。高盐废水及结晶盐处理利用是煤化工废水处理的主要难点[2-3]。2015年国家环境保护部印发《现代煤化工建设项目环境准入条件》指出,缺乏纳污水体的新建现代煤化工项目需采取高盐废水有效处置措施,无法资源化利用的盐泥暂按危险废物管理,作为副产品外售应满足适用的产品质量标准要求[4]。”2016年获得环评批复的煤化工项目多数都承担了高盐废水处置和结晶盐综合利用环保示范任务。目前高盐废水处理利用已成为煤化工产业持续健康发展的自身需求和外在要求[5]。本文梳理了煤化工高盐废水处理利用技术进展,剖析问题,提出对策建议,为煤化工高盐废水处理利用技术研究与应用提供参考。

1、高盐废水处理现状

现阶段煤化工废水回用处理多采用经高效反渗透[6-7]、震动膜[8]、电渗析[9-10]、正渗透[11]等工艺,回用过程产生的高盐废水具有有机物、盐浓度高,处理难度大的特点。国内大唐克旗、新疆庆华、中煤图克、伊犁新天等煤化工项目多采用自然蒸发[12-13]、机械压缩蒸发、多效蒸发工艺[11,14]进一步处理高盐废水,产生的混合结晶盐组成复杂难以利用。2016年获得环评批复的煤化工项目多数选择分步结晶技术路线(见表1)。但目前煤化工高盐废水分步结晶技术处于中试研究阶段,尚需验证经济性和工业实施的可操作性。受国家政策引导,煤化工高盐废水处理利用技术成为研究热点。2014—2017年国内共申请了相关专利50余项,主要申请单位是深圳能源资源综合开发有限公司、倍杰特国际环境技术股份有限公司,详见表2。专利内容主要涵盖高盐废水净化预处理、膜浓缩、分质结晶工艺及设备,但描述概念性流程较多,说明实施及应用效果的数据较少。结合文献报道对专利进一步分析,梳理出主要的煤化工高盐废水及结晶盐处理利用工艺特征、处理效果、技术进展(见表3)。从表3看出,不同工艺区别在于前端净化预处理、浓缩以及分盐工艺,但目标都是围绕结晶盐资源化。预处理单元主要采取化学沉淀、物理截留、吸附分离以及氧化降解等方式来脱除钙镁结垢离子、难降解有机物;浓缩工艺主要采用反渗透、纳滤、电驱动离子膜、正渗透等工艺回收水资源,提高废水TDS浓度,减少蒸发结晶单元处理水量。分盐工艺主要有热法和冷法,依据高盐废水盐溶液相图,结合纳滤膜、结晶器特殊结构,如淘洗装置等辅助措施,实现NaCl、Na2SO4等可资源化结晶盐与有机污染物等杂质分离开,得到纯化结晶盐。目前煤化工高盐废水结晶分盐技术处于中试或工业示范阶段,技术评价缺乏长周期运行数据支撑。

2高盐废水及结晶盐综合利用探讨

分质结晶是煤化工高盐废水资源化利用研究热点,但缺乏工程长周期运行验证,而且存在处理流程长、运行成本高等问题。为此国内一些单位积极探索开发技术经济更合理的煤化工高盐废水资源化利用新途径。

2.1高盐废水洗煤

国内富煤地区常面临水资源匮乏,非常规水洗煤逐渐得到选煤厂的重视[23]。传统洗煤厂煤泥水处理需要投加无机电解质凝聚剂,如氯化钙、硫酸铝等,中和或降低煤泥表面的负电,提高煤泥水沉降速度,降低循环水浓度,实现清水洗煤[24]。而煤化工高盐废水盐分组成与洗煤厂常用无机凝聚剂组分相近,这对开展浓盐水洗煤有利。邰阳等[25]提出新建煤化工园区与煤矿、洗煤厂统一布局,可利用高盐废水作为煤矿、洗煤厂生产水源,实现高盐废水综合利用。荣用巧等[26]研究指出,煤化工浓盐水可作为洗煤厂洗煤补充水,浓盐水中Ca2+、Mg2+等阳离子改善煤泥水沉降性能。熊亮等[27]进行浓盐水选煤试验,表明一定浓度的煤化工浓盐水促进煤泥水自由沉降。目前尚无煤化工高盐废水洗煤中试或工程应用报道,工程实施需针对具体煤质与高盐废水水质开展适应性研究,评估高盐废水盐分、有机污染物等对洗煤厂及周围环境的影响[28]。

2.2高盐废水、结晶盐固化处置

国内研究指出,含盐废液掺煤循环流化床焚烧处理技术上可行[29]。新疆准东燃煤电厂高盐煤与高灰熔点煤掺配,实现电厂稳定运行[30]。熊亮等[31]以气化灰渣、锅炉粉煤灰为原料,掺入煤化工高盐废水,研究膏体充填开采技术固化处置浓盐水的效果。试验表明膏体充填开采固化处置煤化工高盐废水技术可行,并具有良好的经济性和安全性。这对配套煤矿绿色开采、煤化工园区灰渣等固废综合利用、煤化工高盐废水安全处置,以及减轻煤化工项目环保压力,提供了新的技术路线。结合含盐废液循环流化床焚烧处置技术和高盐煤配煤发电工程经验,乔英存等[32]提出煤化工高盐废水及结晶盐循环流化床锅炉掺烧固化处置新思路,并针对煤制气废水结晶盐和原料煤煤灰硅、铝含量高的特点进行了烧结实验。研究表明,煤灰样对钠盐有明显的固化作用,这为煤化工项目实现废水零排放和结晶盐危废安全处置提供了新的解决途径。从工程应用考虑,高盐废水及结晶盐掺烧固化技术仍需开展系统研究与工业试验,同时结合具体煤化工项目废水结晶盐性质,配套电厂原料煤煤质及动力锅炉型号进行模拟计算,为产业化实施提供保障。

2.3结晶盐作为制碱原料盐

国内环保技术商和煤化工企业进行了高盐废水分质结晶中试及工业示范,产出NaCl和Na2SO4结晶盐纯度分别达到98%以上[33],这为煤化工废水结晶盐作为氯碱行业、纯碱行业粗原料提供了有利条件。现阶段国内氯碱厂主要采用离子膜法生产烧碱,对进厂原盐品质要求高,特别是Ca2+、Mg2+、SO42-、总有机碳(TOC)、氨氮等杂质含量控制严格[34-35]。为此煤化工高盐废水分质结晶盐产品指标控制需参照制碱行业原料要求,这也是煤化工结晶盐能否用于下游制碱行业的关键所在。这就需要强化高盐废水净化预处理,以及上游废水生化处理的效果。未来煤化工高盐废水结晶盐产品用作制碱原料盐,仍需开展大量试验研究。

3、对策与建议

煤化工高含盐废水处理利用,以下游用户需求为导向,工艺开发与优化满足潜在用户技术指标要求为原则,是实现煤化工高含盐废水资源化的关键。

3.1加快高盐废水分质结晶技术开发与应用

分质结晶是高盐废水资源化利用的重要路径,但目前缺乏工程验证。结合国内煤化工高盐废水运行情况和技术瓶颈,未来实现高盐废水分质结晶仍需开展以下技术攻关:分子层面研究高盐废水污染物及污染源分析;高盐废水净化预处理技术研究,主要是TOC强化脱除技术、钙镁离子高效除硬新技术;多元高盐废水体系相平衡研究,重点是热力学平衡相图、结晶动力学、结晶干扰因素及控制措施;盐、硝分质结晶技术研究;结晶母液无害化处理技术研究。

3.2加强煤化工高盐废水副产结晶盐产品标准研究

产品标准缺失是煤化工废水结晶盐产品实现市场流通的重要瓶颈。现有GB/T5462—2015《工业盐》标准,仅限定NaCl、水分、水不溶物、钙镁离子总量、SO42-含量等指标,未涉及氨氮、有机物、重金属等煤化工高盐废水存在的污染物,并不适用于煤化工废水制盐。现阶段煤化工废水副产结晶盐外售制碱厂作原料可能会影响制碱厂稳定运行或存在潜在环境风险。建议采用先进分析检测技术解析高盐废水特征污染物,结合下游盐化工用户工艺要求,开展工艺开发优化以及煤化工废水副产结晶盐产品标准研究。

4结语

高含盐废水处理是现阶段煤化工产业发展面临的重大环保问题。综合利用是解决高含盐废水出路的重要路径。高含盐废水综合利用需要从技术选择、设计优化、工艺应用、现场运行管理等方面系统考虑。国内正开展中试或工业示范的电渗析、正渗透、纳滤等膜法分离浓缩工艺以及热法、冷法分质结晶技术仍需加强论证,同时尽快建立高含盐废水副产结晶盐产品标准。借助新建煤化工项目鼓励企业承担环保示范任务,积极开展高含盐废水综合利用新技术研究与推广应用。

参考文献

[1]黄开东,李强,汪炎.煤化工污水零排放”技术及工程应用现状分析[J].工业用水与污水,2012,43(5):1-6.

[2]曲风臣.煤化工废水零排放”技术要点及存在问题[J].化学工业,2013,31(2-3):18-24.

煤化工废水处理方法范文篇3

关键词:煤制水废气;预处理;生化处理;水废气;深化处理

引言:“富煤,贫油,少气”三个词语可以用来描述中国的现状,中国的煤炭经销和能源消费结构改革正在进行。中国正在加快能源结构调整,加大对重点提供清洁能源,煤炭和天然气转化中国能源供应的发展,天然气能源的发展成为一个严肃的话题。近年来,煤化工产业中煤制天然气项目,尤其得到了快速发展。但是,煤和天然气工业是一个对水的需求要求较高的工业,大部分污水和废水产生非常复杂的化学反应,以及对人体中含有有害的污染物,如苯酚,塑料等,它们对环境的污染非常严重。中国的能源和水是反向分布的,水资源短缺影响煤化工项目的分布,生态环境异常脆弱,水环境容量是非常有限的。因此,煤制气废水的处理效率以及高效回收,,是保障煤制气行业快速发展的关键因素。

一、煤制气废水出处及处理难度

煤气化废水源于聚焦在气化工艺中的洗涤水,洗气水,蒸汽分流水等,其中普遍的污染物包括氨氮、酚类、氰化物,石油类、硫化物等有毒有害的物质,对生化处理来说,对有机污染物进行完全降解是不容易实现的,所以说它是常见的高浓度,高污染,难以降解的废水。

目前,壳牌气化工艺、德古士气化工艺、鲁奇气化工艺是我国国内普遍使用的三种煤气化技术。“鲁奇”工艺是一种碎煤加压气化技术,因气化的温度相对较低的原因,复杂的废水成分因素,较高的污染程度影响,尤其是高COD(高达约5000mg/L)、高氨氮(约300~400mg/L)、高石油类是其本身的特点。所以应用受到了局限。“壳牌”工艺采用的粉煤灰高温气化技术,较低的废水的有机污染程度,高氨氮(约300mg/L)、高氰化物(约50mg/L)成为其重要的特点;水煤浆高温气化技术是在“德古士”工艺中广泛采用的,特点是较高的氨氮浓度(约500mg/L),相比较而言不算高的有机污染程度;以鲁奇工艺以废水最复杂、处理难度较大成为三种工艺中难度最大的一种方法。

二、物化预处理技术

三种先进的气化技术被广泛应用于我国――壳牌气化工艺、德古士气化工艺、鲁奇气化工艺。鲁奇气化过程的废水,是产生最复杂的。典型的鲁奇煤制气废水中挥发酚含量大约在2900~3900mg/L之间,氨氮含量为3000~9000mg/L,L,非挥发酚含量为1600~3600mg/L。在大程度的降低了预处理废水的处理难度之后,回收煤制气废水中胺类和酚类可以被节约下来。除去油类,以及有脱酚、脱酸、蒸氨是煤制气废水物化预处理采用的措施。

1.脱酚

挥发酚和非挥发酚的含量在煤制气废水中的含量不少,如果只采用水蒸气脱酚法难以减少废水中非挥发酚的含量。要避免易造成吸附饱和以及再生困难等问题需要认识到吸附脱酚法难以实现对酚的特定吸附的事实。以溶剂萃取脱酚法为主,根据实际情况考虑结合水蒸气脱酚法等,可以实现,使酚回收工艺达到更高效的脱酚效果的目标。甲基异丁基酮(MIBK)对煤制气废水的脱酚效果与二异丙基醚相比逊色了许多,我们MIBK作萃取剂后可以让总酚的萃取效率升到至93%左右,把出水的总酚质量浓度下降到400mg/L以下是MIBK作萃取剂的一大特点。

采用MIBK作萃取剂可以使总酚的萃取效率升到至93%,把出水的总酚的质量浓度下降到400mg/L以下是MIBK作萃取剂的一大特点。

在我们的调研中我们了发现河南义马气化厂是用鲁奇加压气化工艺生产的城市煤气,其在萃取脱酚时采用二异丙基醚萃取剂时,非挥发酚的去除率一般不低于90%和65%。随着对酚回收的工段萃取剂的态度越来越受到重视,我们关于煤制气废水的排放相关的要求也得到了提高。

2.蒸氨

国内外煤制气废水脱氨工艺主要是利用汽提一蒸氨的方法。鲁奇植物肥料气动气化过程中,未脱酚蒸氨废水的含酚废水氨蒸气为2300-7200毫克/升,除去苯酚萃取和蒸发氨,氨去除率之前的基础上的98%。哈尔滨煤化工煤龙有限公司使用氨碱汽提工艺,在水中的氨含量为8500毫克/升上,氨的流出物可以降低到300毫克/升,以本人的观点,氨和水蒸汽的萃取不应脱酚,应与所需的生物处理工艺相结合,随后做出最好的标准煤气化废水排放的操作以及实施基础。

三、生物处理技术

在20世纪七八十年代,关于传统活性污泥工艺处理煤气废水出现了大量的研究,其中美国的学者Gallagher和Mayert研究中试规模的活性污泥工艺处理煤制气废水的效能,去除煤制气废水中有机污染物时使用活性污泥工艺被证明是一种有效的途径,并且较强的稳定性和良好的出水水质。国内学者也有过有关硅藻土对煤制气废水好氧生物降解的性能的影响的相关研究,研究表明,提高系统内生物量和污泥的沉降性能的有效方法是在活性污泥工艺中加入硅藻土。

1.深度处理技术

混凝沉淀、吸附法、高级氧化法及膜处理技术是国内外普遍使用的深度处理技术。

向废水中投加混凝药剂,可以用来使废水中难降解有机物改变其稳定状态,这是因为在煤制气废水中,难降解有机物多呈胶体和悬浮状态的,在相互之间的分子引力作用下,其中的污染物凝聚成大絮体或颗粒沉淀后得到分离,深度分离技术的应用相当的普遍。

吸附法

我们为了研究煤制气废水的吸附的效果,采用了大孔径吸附树脂、超高交联树脂和络合吸附树脂进行了多次实验。同时煤制气废水生化水处理的重要性在固定床吸附工艺中得到体现。

膜处理技术

浸没式的超滤和反渗透的组合工艺处理煤制气废水的研究者马孟成果颇丰,将膜技术应用在对煤制气废水处理上的主要代表有膜生物反应器(MBR)和反渗透工艺两种的工艺。

高级氧化法

臭氧氧化法、催化湿式氧化法、电催化氧化法及其它方法是应用在煤制气废水处理中的高级的氧化技术。赵振业在研究了二氧化氯的投加量和反应时间对煤制气废水中酚类物质去除的影响之后,发现了废水中酚类物质大体上去掉且没有氯代有机物生成的现象。为后来者提供了坚实的实验基础。

结语:

近年来,煤制气废水处理技术成为了煤制气项目发展的不易突破的瓶颈,国内外实际应用的处理技术效果不尽人意。面对现在煤化工废水的处理产业,关键问题体现在四方面(1)预处理不同工段的废水。(2)针对废水来水的水质和水量,加强控制和监管。(3)开发高效催化剂(4)以强化生物处理和深度处理为目的来开发和集成新的工艺。

参考文献

[1]谢康,王磊,王欣,栾永翔,贾川,黄爱群.煤制气废水处理中试试验研究[J].环境污染与防治.2010(08)

[2]钱宇,周志远,陈S,余振江.煤气化废水酚氨分离回收系统的流程改造和工业实施[J].化工学报.2010(07)

[3]韩超,叶杰旭,孙德智.O3-MBR法深度处理煤气废水[J].环境科学研究.2010(07)

[4]韩洪军,王伟,马文成,袁敏,李慧强.外循环厌氧工艺处理鲁奇煤制气废水的研究[J].哈尔滨工业大学学报.2010(06)

你会喜欢下面的文章?