整式第一课时教案详案(精选5篇)
来源:收集
整式第一课时教案详案篇1
教学目标和要求:
1.理解单项式及单项式系数、次数的概念。
2.会准确迅速地确定一个单项式的系数和次数。
3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
4.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。
教学重点和难点:
重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。
难点:单项式概念的建立。
教学方法:
分层次教学,讲授、练习相结合。
教学过程:
一、复习引入:
1、列代数式
(1)若正方形的边长为a,则正方形的面积是()
(2)若三角形一边长为a,并且这边上的高为h,则这个三角形的面积为()
(3)若x表示正方形棱长,则正方形的体积是()
(4)若m表示一个有理数,则它的相反数是()
(5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款()元。
(数学教学要紧密联系学生的生活实际,这是新课程标准所赋予的任务。让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育。)
2、请学生说出所列代数式的意义。
3、请学生观察所列代数式包含哪些运算,有何共同运算特征。
由小组讨论后,经小组推荐人员回答,教师适当点拨。
(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。)
二、讲授新课:
1.单项式:
通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并板书归纳得出的单项式的概念,即由数与字母的乘积组成的代数式称为单项式。然后教师补充,单独一个数或一个字母也是单项式,如a,5。
2.练习:判断下列各代数式哪些是单项式?
(1)abc;(2)b2;(3)-5ab2;(4)y;(5)-xy2;(6)-5。
(加强学生对不同形式的单项式的直观认识,同时利用练习中的单项式转入单项式的系数和次数的教学)
3.单项式系数和次数:
直接引导学生进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的。以四个单项式a2h,2πr,abc,-m为例,让学生说出它们的数字因数是什么,从而引入单项式系数的概念并板书,接着让学生说出以上几个单项式的字母因数是什么,各字母指数分别是多少,从而引入单项式次数的概念并板书。
概念:
单项式的系数:单项式中的数字因数。
单项式的次数:在单项式中,所有字母的指数之和。
4.例题:
例1:判断下列各代数式是否是单项式。如不是,请说明理由;如是,请指出它的系数和次数。
①x+1;②;③πr2;④-ab。
答:①不是,因为原代数式中出现了加法运算;
②不是,因为原代数式是1与x的商;
③是,它的系数是π,次数是2;
④是,它的系数是-1,次数是3。
例2:下面各题的判断是否正确?
①-7xy2的系数是7;②-x2y3与x3没有系数;③-ab3c2的次数是0+3+2;
④-a3的系数是-1;⑤-32x2y3的次数是7;⑥πr2h的系数是。
通过其中的反例练习及例题,强调应注意以下几点:
①圆周率π是常数;
②当一个单项式的系数是1或-1时,“1”通常省略不写,如x2,-a2b等;
③单项式次数只与字母指数有关。
5.游戏:
规则:一个小组学生说出一个单项式,然后指定另一个小组的`学生回答他的系数和次数;然后交换,看两小组哪一组回答得快而准。
(学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的形式,且由编题学生指定某位同学回答,可使课堂气氛活跃,学生思维活跃,使学生能够透彻理解知识,同时培养同学之间的竞争意识。)
6.课堂练习:课本p56:1,2。
三、课堂小结:
①单项式及单项式的系数、次数。
②根据教学过程反馈的信息对出现的问题有针对性地进行小结。
③通过判断一个单项式的系数、次数,培养学生理解运用新知识的能力,已达到本节课的教学目的。
四、作业布置:
课本p59:1,2。
整式第一课时教案详案篇2
教学目标
知识与能力:掌握去括号法则,运用法则,能按要求正确去括号.
过程与方法:经历类比带有括号的有理数的运算,探究、发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.
情感、态度与价值观:通过参与探究活动,培养学生主动探究、合作交流的意识,严谨治学的学习态度,体会合作与交流的重要性.
教学重难点
重点:去括号法则,准确应用法则将整式化简.
难点:括号前面是“-”号,去括号时括号内各项都变号.
教学过程
一、复习旧知
1.化简
-(+5)+(+5)-(-7)+(-7)
2.去括号
①-(3-7)②+(3-7)
二、探索新知
想一想:根据分配律,你能为下面的式子去括号吗?
①+(-a+c)②–(-a+c)
③+(a-b+c)④-(a-b+c)
观察这两组算式,看看去括号前后,括号里各项的符号有什么变化?
去括号法则:
括号前是“+”号的,把括号和它前面的“+”号去掉,
括号里各项都不改变符号;
括号前是“–”号的,把括号和它前面的“–”号去掉,
括号里各项都改变符号。
顺口溜:
去括号,看符号;是“+”号,不变号;是“-”号,全变号。
三、巩固练习:
(1)去括号:
a+(b-c)=_______a-(b-c)=______
a+(-b+c)=_______a-(-b+c)=______
(2)判断正误
a-(b+c)=a-b+c()
a-(b-c)=a-b-c()
2b+(-3a+1)=2b-3a-1()
3a-(3b-c)=3a-3b+c()
四、例题学习:为下面的式子去括号
+3(a–b+c)–3(a–b+c)
五、课堂检测:
去括号:
①9(x-z)②-3(-b+c)③4(-a+b-c)④-7(-x-y+z)
六、课堂小结
去括号时应注意的事项:
(1)、去括号时应先判断括号前面是“+”号还是“-”号。
(2)、去括号后,括号内各项符号要么全变号,要么全不变号。
(3)、括号前面是“-”号时,去掉括号后,括号内的各项都要改变符号,不能只改变第一项或前几项的符号。
七、布置作业:
必做题:课本70页习题2.2第2,3题
选做题:课本70页习题2.2第4题
整式第一课时教案详案篇3
知识目标:
(1)使学生在掌握合并同类项的基础上,掌握去括号法则。
(2)正确地进行简单的整式加减运算。
能力目标:
培养学生基本的运算技巧和能力。
情感目标:
使学生逐渐形成事物变化、相互联系和相互转化的观点,并在学习中培养学生良好的学习习惯、独立思考、勇于探索的精神。
教学重点、难点:
重点去括号法则。教学
难点正确运用去括号法则,减少运算中的符号错误。
教学用具:
多媒体
教学过程:
(一)、情景引入
1、多媒体展示游戏:把我的出生月份数乘2,加10,再把和乘5,加上我家的人口数,结果为133
你出生于8月份,你家有3口人
2、猜数游戏的数学原理常常与代数式的运算有关
3、知识梳理
-2x+3y-4z共有项,其中第三项是:。
1、写出2a2b的一个同类项:
2、已知4a2b3与a2mbn-1是同类项,则m=____,n=_____.
(二)实践应用,拓展延
如图4-7,要计算这个图形的面积,你有几种不同的方法?请计算结果。
2、用分配律计算:
(1)+(a-b+c)
(2)-(a-b+c)
3、代数式运算的去括号法则:
括号前是+号,把括号和它前面的+号去掉,括号里各项都不变号;括号前是-号,把括号和它前面的-号去掉,括号里各项都改变符号
4、顺口溜
去括号,看符号
是+号,不变号
是-号,全变号
5、辩一辩:指出下列各式是否正确?如果错误,请指出原因。
(1)a-(b-c+d)=a-b+c+d
(2)-(a-b)+(-c+d)=a+b-c-d
(3)a-3(b-2c)=a-3b+2c
(4)x-2(-y-3z+1)=x-2y+6z
6.注意:(1)去括号时应将括号前面的符号连同括号一起去掉。
(2)要注意括号前面是-号时,去掉括号后,括号里各项都要改变符号;不能只改变某几项而忘记改变其余的符号
(3)若括号前面是数字因数时,.应乘以括号里的每一项,不要漏乘。
7:练一练
(三)作业
整式第一课时教案详案篇4
一、教材分析与学情分析
1、教材的地位及作用
“整式的加减”一章是在前一章“有理数”的基础上进行学习的,本章主要内容是单项式、多项式、整式的有关概念及整式的加减运算等,它既是对前面所学知识的深化和发展,也是今后学习一次方程、整式乘除等数学知识及其它学科知识的基础。
“整式”一节是“整式的加减”一章的起始课,整式是代数式中最基本的式子,而单项式又是整式中最基础的知识,所以本节内容是本章的基础,具有承上启下的作用。
2、教学重点与难点
重点:单项式及单项式的系数、次数的概念;
准确迅速地确定一个单项式的系数和次数。
难点:单项式概念的建立
3、教学目的
认知目标:(1)了解单项式及单项式系数、次数的概念;
(2)会准确迅速地确定一个单项式的系数和次数。
能力目标:初步培养学生观察、分析、抽象、概括等思维能力及应用意识。
情感目标:(1)培养学生勇于探索的精神和实事求是的科学态度;
(2)通过分组讨论,让学生能够集思广益,加强集体主义精神。
4、学情分析
本节课是研究整式的开始,知识由数向式转化,比较抽象,与学生的认知基础和思维能力有一定差距,学习中会有一定困难。特别是对比较复杂的单项式,在确定其系数和次数时容易出现错误。为了突出重点,突破难点,教学中要把握以下两点:
(1)加强直观性:为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念。
(2)注重分析:在剖析单项式结构时,借助变式和反例练习,抓住概念易混处和判断易错处,强化认识。
二、教法分析
注重本章知识的整体性,按整体一局部一整体的顺序展开。先利用章头提出问题,结合所列代数式100t对本章知识进行整体介绍,然后转入本节课内容的教学。
针对初一学生学习热情高,但观察、分析、认识问题能力较弱的特点,采用以设疑探究的引课方式,激发学生的求知欲望,提高学生的学习兴趣和学习积极性。以设疑——感知——概括——运用为教学程序,充分遵循学生的认知规律,坚持启发式,使学生能顺利地掌握重点,突破难点,提高能力。教学时,采用多媒体作为教学手段,从而增大教学密度和容量;以启发谈话法为主,进行讲解及练习,达到掌握知识的目的,逐步培养学生观察、分析、抽象、概括的能力。
三、学法分析
在课堂教学中,引导学生体会知识的发生发展过程,鼓励学生充分地动脑、动口、动手,积极参与到教学中来,充分体现了学生的主体性。在充分尊重教材的前提下,融教材、练习,教学过程中,增设了由浅到深、各不相同却又紧密相关的训练题目,为学生顺利掌握单项式概念及其相关的系数、次数的概念。
四、教学过程
本课开始以章头的问题及思考题通过学生讨论分析归纳出单项式的概念,紧接着让学生分析单项式的结构从而归纳出单项式的次数和系数的概念,通过学生讨论分析总结出概念便于学生对概念的理解,重点强调了学生容易出错的几个地方,为了加深学生对概念的理解利用课本的例题和练习题让学生合作完成,同时又补充设计了相关的练习题进一步巩固概念,练习设计由浅入深、层层深入具有一定的梯度,学生完成比较容易;最后设计了效果回授,了解学生对本节课掌握情况,便于进行辅导。
五、设计思路说明
初一学生对数是比较熟悉的,而“整式的加减”一章是研究整式的开始,是学生新旧知识结构转化的关键时期。“整式”一节又是本章的起始课,学生整式中最基本的式子单项式,在教材中处于非常重要的地位,为取得理想的教学效果,本教案设计注意了以下方面:
(1)注重教材的整体结构,重视章头问题的教学。本课是按整体一局部一整体的顺序展开的,即通过章头问题提出本章要研究的主要内容,经过每小节分段疏通,最后进行系统小结,使学生形成良好的认知结构。
(2)注重概念的引入和抽象概括过程。数学概念的产生和形成过程是人们在对实际事例观察的基础上,通过比较、分析、归纳,再进一步概括抽象出本质的过程。在进行单项式概念教学时,通过设计系列问题,引导学生积极思维,层层深入,从而抽象概括出单项式概念,有利于培养学生观察、分析抽象等思维能力。
(3)教学时,采用多媒体作为教学手段,可以增大教学密度和容量,提高学生学习兴趣。
(4)利用变式和反例练习,加强对概念的了解和应用。为教学需要,将课本练习和补充练习合理编排,形成有梯度、循序渐进的巩固练习,在学生真正了解概念的基础上,准确地迅速地确定一个单项式的系数和次数,达到教学目的要求。
六、教学反思
1、按整体一局部一整体的顺序展开。先利用章头提出问题,结合所列代数式100t对本章知识进行整体介绍,然后转入本节课内容的教学。
2、针对初一学生学习热情高,但观察、分析、认识问题能力较弱的特点,采用以设疑探究的引课方式,激发学生的求知欲望,提高学生的学习兴趣和学习积极性。以设疑——感知——概括——运用为教学程序,充分遵循学生的认知规律,坚持启发式,使学生能顺利地掌握重点,突破难点,提高能力。教学时,采用多媒体作为教学手段,从而增大教学密度和容量;以启发谈话法为主,进行讲解及练习,利用变式和反例练习,加强对概念的了解和应用,达到掌握知识的目的,逐步培养学生观察、分析、抽象、概括的能力。
以上是整式第一课时教案详案的相关内容,希望对你有所帮助。另外,今天的内容就分享到这里了,想要了解更多的朋友可以多多关注本站。
整式第一课时教案详案篇5
整式的加减
1.知道整式加减运算的法则,熟练进行整式的加减运算;(重点)
2.能用整式加减运算解决实际问题;(难点)
3.能在实际背景中体会进行整式加减的必要性.
一、情境导入
1.某学生合唱团出场时第一排站了n名,从第二排起每一排都比前一排多一人,一共站了四排,则该合唱团一共有多少名学生参加?
(1)让学生写出答案:n+(n+1)+(n+2)+(n+3);
(2)提问:以上答案能进一步化简吗?如何化简?我们进行了哪些运算?
2.化简:(1)(x+y)-(2x-3y);(2)2(a2-2b2)-3(2a2+b2).
提问:以上的化简实际上进行了哪些运算?怎样进行整式的加减运算?
二、合作探究
探究点一:整式的加减
【类型一】整式的化简化简:3(2×2-y2)-2(3y2-2×2).
解析:先运用去括号法则去括号,然后合并同类项.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.解:3(2×2-y2)-2(3y2-2×2)=6×2-3y2-6y2+4×2=10×2-9y2.
方法总结:去括号时应注意:①不要漏乘;②括号前面是“-”,去括号后括号里面的各项都要变号.
【类型二】整式的化简求值化简求值:12a-2(a-13b2)-(32a+13b2)+1,其中a=2,b=-32.
解析:原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.
解:原式=12a-2a+23b2-32a-13b2+1=-3a+13b2+1,当a=2,b=-32时,原式=-3×2+13×(-32)2+1=-6+34+1=-414.
方法总结:化简求值时,一般先将整式进行化简,当代入求值时,要适当添上括号,否则容易发生计算错误,同时还要注意代数式中同一字母必须用同一数值代替,代数式中原有的数字和运算符号都不改变.
【类型三】利用“无关”进行说理或求值
有这样一道题“当a=2,b=-2时,求多项式3a3b3-12a2b+b-(4a3b3-14a2b-b2)+(a3b3+14a2b)-2b2+3的值”,马小虎做题时把a=2错抄成a=-2,王小真没抄错题,但他们做出的结果却都一样,你知道这是怎么回事吗?说明理由.
解析:先通过去括号、合并同类项对多项式进行化简,然后代入a,b的值进行计算.
解:3a3b3-12a2b+b-(4a3b3-14a2b-b2)+(a3b3+14a2b)-2b2+3=(3-4+1)a3b3+(-12+14+14)a2b+(1-2)b2+b+3=b-b2+3.因为它不含有字母a,所以代数式的值与a的取值无关.
方法总结:解答此类题的思路就是把原式化简,得到一个不含指定字母的结果,便可说明该式与指定字母的取值无关.
探究点二:整式加减的应用
如图,小红家装饰新家,小红为自己的房间选择了一款窗帘(阴影部分表示窗帘),请你帮她计算:(1)窗户的面积是多大?(2)窗帘的面积是多大?(3)挂上这种窗帘后,窗户上还有多少面积可以射进阳光.
解析:(1)窗户的宽为b+b2+b2=2b,长为a+b2,根据长方形的面积计算方法求得答案即可;(2)窗帘的面积是2个半径为b2的14圆的面积和一个直径为b的半圆的面积的和,相当于一个半径为b2的圆的面积;(3)利用窗户的面积减去窗帘的面积即可.
解:(1)窗户的面积是(b+b2+b2)(a+b2)=2b(a+b2)=2ab+b2;(2)窗帘的面积是π(b2)2=14πb2;(3)射进阳光的面积是2ab+b2-14πb2=2ab+(1-14π)b2.
方法总结:解决问题的关键是看清图意,正确利用面积计算公式列式即可.
三、板书设计
整式的加减的运算法则:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.