圆的周长教案设计好作文推荐(精选8篇)
来源:收集
圆的周长教案设计通用篇1
【教学内容】
《义务教育课程标准实验教材数学》六年级上册第62~64页。
【教学目标】
1.通过小组合作探究,实际测量计算理解圆周率的意义。
2.通过对比分析掌握圆周长的计算公式。
3.能用圆的周长的计算公式解决一些简单的数学问题。
4.通过对圆周率的计算,渗透爱国主义的思想。
【教学重、难点】
重点:推导圆的周长的计算公式,准确计算圆的周长。
难点:理解圆周率的意义。
【教学过程】
一、情景引入
出示一块钟表
问题1:你能猜想小秒针的顶端在一分钟的时间里,所走过的轨迹是一个什么图形吗?
学生猜想。
教师演示小秒针的运动过程,证实学生的猜想是否正确。
问题2:你能知道不知疲倦的小秒针顶端,在一个小时的时间内所走过的路程有多长吗?我们应该怎样解决这个问题呢?
生:先计算出走一圈的路程有多长,在计算出走60圈的长度。
师:非常好。那么小秒针走一圈的路程,就是这个圆的周长又怎么来求呢?今天我们就来学习怎样计算圆的周长。(引入课题――圆的周长)
(设计目的:通过学生身边的实物引入新课,能充分的调动学生的学习积极性,把学生的注意力集中到课堂中来。)
二、动手量一量
学生活动:请同学们拿出你准备好的圆,小组内交换圆,合作完成下表,看哪一组完成的最快。测量值精确到毫米。
物品名称
周长
直径
1号圆
2号圆
3号圆
4号圆
教师评价学生小组合作的情况。
(设计目的:强调学生的小组合作意识)
师:哪个小组汇报一下你们小组是怎么测量的,并展示一下小组测量的结果。
学生展示小组的成果。
(设计目的:通过实物投影,向其它小组的同学展示本小组的结果,增强学生的自信)
三、对比分析
师:观察一下我们得到的几组数据,你发现什么规律了吗?
学生自由谈。
学生发现:1.一个圆的周长总是直径的三倍多点。2.周长和直径的比值与直径相乘可以得到圆的周长。
师:老师也做了一个圆,现在看一下老师是怎么测量这个圆的周长的。
课件展示圆的周长的测量方法。
(设计目的:通过让学生对比分析表格,教师课件展示圆的周长的测量过程,让学生能对圆的周长和直径之间的关系更加清晰,激发学生想要知道两者之间的具体关系的热情)
课件展示:圆的周长随直径的变化而在变化,而周长和直径之间的比值确是一个定值。
(设计目的:通过课件展示,让学生得到结论――圆的周长和直径的比值是一个定值,顺利得到圆周率的值)
小结1:圆周率:一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做――圆周率,用字母π表示。圆周率是一个无限不循环小数。它的值是:π=3.1415926535……,在实际的应用中,一般取它的近似数π≈3.14。
你知道吗?我们的祖先在圆周率的计算上可是有着辉煌的成绩的,你能讲给同学们听吗?
学生自由谈。
我们有这么伟大的祖先,相信我们这些站在伟大巨人肩膀上的现代中国人一定能取得更加辉煌的成绩。
(设计目的:通过学生讲故事渗透爱国主义思想)
小结2:你能通过分析表格得到圆的周长的计算公式了吗?
学生回答。(由于学生已经有了前面的层层铺垫和对表格的分析学生可以很容易的回答这个问题。)
圆的周长(用字母C表示)计算公式:C=πd或C=2πr
四、动手做一做
下面我们来看看怎样应用圆的周长计算公式来解决问题。
1.计算圆的周长
实物投影展示学生的解题过程
(设计目的:通过简单的图形计算让学生理解圆周长的计算公式的应用,并强调解题的书写过程)
2.一个圆形喷水池的半径是5m,它的周长是多少米?
(设计目的:通过转化把由半径求周长的问题转化为实际问题,让学生体会到学以致用)
3.小组交流错误原因。(可让其他学生避免同样的错误)
(设计目的:通过实例计算,可以让学生更好的理解数学来源于生活,又能解决实际的生活问题的作用,又可为最后的实践题打下很好的伏笔)
4.现在你能告诉大家不知疲倦的小秒针顶端,在一个小时的时间内所走过的路程了吗?要解决这个问题你想得到什么样的数据。
(设计目的:让学生自己寻找解决问题的条件,培养学生的独立思考能力。此题和前面的引入题互相呼应,做到解决问题有始有终)
五.你能说说在这一节课中你有什么收获吗?
可让学生从知识点,从测量方法――能力点,数学史知识――情感态度价值观等方面总结自己的收获。
六、课外合作:
小组合作完成,应用你的知识,想办法测量一下,从学校大门口到圆城楼门口的距离大约是多少米。
(设计目的:让学生真正能够达到学习上的学以致用,并且培养学生的小组合作意识和学生的动手能力)
圆的周长教案设计通用篇2
教学目标:
1、通过教学使学生理解并掌握圆的周长和面积计算方法。
2、培养学生分析问题和解决问题的能力,发展学生的空间观念。
3、灵活解答几何图形问题。
教学重点:认真审题,分辨求周长或求面积。
教学过程:
一、复习。
1、求出下面圆的周长和面积并用彩笔描出周长,用阴影表示出面积。
C=r2
3.1473.1432
=21.98(厘米)=3.149
=28.26(平方厘米)
2、分辨面积与周长有什么不同?
(1)概念
圆的周长是指圆一周的长度
圆的面积是指圆所围成的平面部分的大小。
(2)计算公式
求圆的周长公式:C=d或C=2r
求圆的面积公式:S=r2
(3)使用单位
计算圆的周长用长度单位
计算圆的面积用面积单位
二、练习。
1、判断下面各题是否正确,对的打,错的打3。
(1)计算直径为10毫米的圆的面积的列式是3.14(102)?。()
(2)半径为2厘米的圆的周长和面积相等。()
(3)把一头牛栓在木桩上,木桩到牛之间的绳长3米,牛能吃到地上草的最大面积是28.26平方米。(栓绳处不计算在内)()
(4)面积:3.1462=3.1412=37.68()
2、量出求半圆面积所需的数据,测量时保留整厘米数。再计算出它的周长和面积。
⑴半圆的周长是多少厘米?(2)半圆的面积:
3.14223.142+22
r=2cm=3.144=6.28+4
=12.56(平方厘米)=10.28(cm)
3、一个圆的周长是25.12米,它的面积是多少:
已知:C=25.12米求:S=?
r=25.12(23.14)S=r2
=4(米)=3.1442
=50.24(平方米)
4、一个环形的铁片,外圆半径是7厘米,内圆半径是0.5分米,这个环形的.面积是多少平方分米?
已知:R=7厘米=0.7分米r=0.5分米求:S=?
S环=(R2-r2)
3.14(0.72-0.52)
=3.140.24
=0.7536(平方分米)
三、巩固发展.
1、思考题p71(8)
一条绳子长31.4米,用它围成长方形或正方形的面积大,还是围成圆的面积大?(分组讨论,探讨面积的大小)
(1)围成长方形:31.42=15.7(m)(长和宽的和)
长宽=面积
当长和宽越接近面积也就越大,长和宽相等时,此时正方形面积最大.
(2)围成圆形
直径:31.43.14=10(m)
半径:102=5(m)
面积:3.1452=78.5(m2)
(3)比较:长方形面积:61.6m2正方形面积:61.6225m2圆面积:78.5m2
围成圆的面积最大。
2、思考题p71(9)、(10)
四、作业。
课本P71第6、7题。
教学追记:
学生在学完圆的面积后,往往容易把圆的面积与周长混淆。因此我特意设计了本堂对比课。对比我,我引导学生分清以下几点:(1)圆的面积是指圆所围平面部分的大小,而圆的周长是指圆一周的长度。(2)求圆面积公式是S=r2,求圆周长的公式是C=d或C=2r。(3)计算圆的面积用面积单位,计算圆的周长用长度单位。根据以上三方面,帮助学生理清了圆的面积和周长的不同之处,练习中反映出来的情况也较好。
以上是圆的周长教案范文集锦的所有内容,希望读者能够从中获得一些有益的信息和启示。谢谢阅读!
圆的周长教案设计通用篇3
教学目标:
1.让学生经历已知一个圆的周长求这个圆的直径或半径的过程,体会解题策略的多样性。
2.进一步理解周长、直径、半径之间的关系,能熟练运用圆周长的公式解决一些实际问题。
3.感受平面图形的学习价值,提高数学学习的兴趣和学好数学的信心。
教学重点:
已知一个圆的周长求这个圆的直径或半径。
教学难点:
理解周长、直径、半径之间的关系,能熟练运用圆的周长公式解决一些实际问题。
教学准备:
圆形图片。
教学过程:
一、复习旧知,引入新知
提问
1.什么是圆的周长?圆的周长计算公式是什么?
2.把圆规两脚尖分开4厘米画一个圆,这个圆的半径是多少?直径呢?周长呢?
指名回答,明确计算方法。
3.口答,求下列各圆的面积。
(l)r=2cmr=3cmr=5cm
(2)d=2cmd=3cmd=5cm
4.引入:知道圆的直径和半径,我们能很快算出圆的周长。如果只知道圆的周长,我们能算出它的直径和半径吗?今天这节课我们来继续研究圆周长的知识。(板书:圆的周长计算的实际运用)
二、合作交流,探究新知
1.教学例6。
(1)出示例6的情境图,指名读题,并且找出条件和问题。
(2)讨论:如何准确地测算出这个花坛的直径?
(3)交流后,明确:先测量出这个花坛的周长,再利用圆的周长计算公式计算
花坛的直径。
(4)出示测量结果:花坛的周长是251.2米。
(5)学生独立完成。
(6)集体订正,教师板书
方法一:列方程解答。
解:设花坛的直径是x米。
3.14x=251.2
x=251.23.14
x=80
答:花坛的直径是80米。
方法二:算术方法解答。
251.23.14=80(米)
答:花坛的直径是80米。
(7)师:两种方法有什么相同点和不同点?你喜欢什么方法?
2.小结。
(l)提问:已知圆的周长,如何求圆的半径或直径?
(2)学生回答,教师板书
①列方程解答。
②d=Cr=C2
三、巩固练习,加深理解
1.完成练一练。
(1)学生独立完成。
(2)集体交流。
2.完成练习十四第8题。
(1)借助圆柱形教具演示,帮助学生理解什么是树干横截面,,。
(2)学生独立思考并计算。
(3)集体交流。
3.完成练习十四第9题。
(1)理解拱门的高度的含义。
(2)学生独立计算。
(3)集体订正。
4.完成练习十四第10题。
(1)学生独立思考。
(2)集体交流,明确:可以通过计算来比较,也可以根据周长的计算公式来直接比较。
5.作业:练习十四第6、7、10题。
四、课堂小结
师:通过这节课的学习,你有什么收获?
学生发言,教师点评。
板书设计:
圆的周长计算的实际运用
方法一:列方程解答。
解:设花坛的直径是x米。
3.14x=251.2
x=251.23.14
x=80
答:花坛的直径是80米。
方法二:算术方法解答。
251.23.14=80(米)
答:花坛的直径是80米。
d=Cr=C2
圆的周长教案设计通用篇4
教学目标:
1、通过教学使学生理解并掌握圆的周长和面积计算方法。
2、培养学生分析问题和解决问题的能力,发展学生的空间观念。
3、灵活解答几何图形问题。
教学重点:认真审题,分辨求周长或求面积。
教学过程:
一、复习。
1、求出下面圆的周长和面积并用彩笔描出周长,用阴影表示出面积。
C=r2
3.1473.1432
=21.98(厘米)=3.149
=28.26(平方厘米)
2、分辨面积与周长有什么不同?
(1)概念
圆的周长是指圆一周的长度
圆的面积是指圆所围成的平面部分的大小。
(2)计算公式
求圆的周长公式:C=d或C=2r
求圆的面积公式:S=r2
(3)使用单位
计算圆的周长用长度单位
计算圆的面积用面积单位
二、练习。
1、判断下面各题是否正确,对的打,错的打3。
(1)计算直径为10毫米的圆的面积的列式是3.14(102)?。()
(2)半径为2厘米的圆的周长和面积相等。()
(3)把一头牛栓在木桩上,木桩到牛之间的绳长3米,牛能吃到地上草的最大面积是28.26平方米。(栓绳处不计算在内)()
(4)面积:3.1462=3.1412=37.68()
2、量出求半圆面积所需的数据,测量时保留整厘米数。再计算出它的周长和面积。
⑴半圆的周长是多少厘米?(2)半圆的面积:
3.14223.142+22
r=2cm=3.144=6.28+4
=12.56(平方厘米)=10.28(cm)
3、一个圆的周长是25.12米,它的面积是多少:
已知:C=25.12米求:S=?
r=25.12(23.14)S=r2
=4(米)=3.1442
=50.24(平方米)
4、一个环形的铁片,外圆半径是7厘米,内圆半径是0.5分米,这个环形的面积是多少平方分米?
已知:R=7厘米=0.7分米r=0.5分米求:S=?
S环=(R2-r2)
3.14(0.72-0.52)
=3.140.24
=0.7536(平方分米)
三、巩固发展.
1、思考题p71(8)
一条绳子长31.4米,用它围成长方形或正方形的面积大,还是围成圆的面积大?(分组讨论,探讨面积的大小)
(1)围成长方形:31.42=15.7(m)(长和宽的和)
长宽=面积
当长和宽越接近面积也就越大,长和宽相等时,此时正方形面积最大.
(2)围成圆形
直径:31.43.14=10(m)
半径:102=5(m)
面积:3.1452=78.5(m2)
(3)比较:长方形面积:61.6m2正方形面积:61.6225m2圆面积:78.5m2
围成圆的面积最大。
2、思考题p71(9)、(10)
四、作业。
课本P71第6、7题。
教学追记:
学生在学完圆的面积后,往往容易把圆的面积与周长混淆。因此我特意设计了本堂对比课。对比我,我引导学生分清以下几点:(1)圆的面积是指圆所围平面部分的大小,而圆的周长是指圆一周的长度。(2)求圆面积公式是S=r2,求圆周长的公式是C=d或C=2r。(3)计算圆的面积用面积单位,计算圆的周长用长度单位。根据以上三方面,帮助学生理清了圆的面积和周长的不同之处,练习中反映出来的情况也较好。
圆的周长教案设计通用篇5
教学内容:
教学目标:
1、经历探究圆的周长与直径的商为定值的过程,理解圆周率。体会化曲为直的转化思想,增强合作意识,体验成就感。
2、掌握圆的周长的计算方法,能正确计算圆的周长,并解决简单的实际问题,增强应用意识。
3、感受圆周率的探索历史,增强爱国主义情感和探究数学的欲望。
教学重点:理解圆周率,能计算圆的周长。
教学难点:探索并理解圆的周长与直径的商为定值。
教学准备:大小不同的圆形纸板、计算器、多媒体课件、20厘米长的绳子、直尺、硬币、画有圆而且标出直径的`正方形。
教学策略:自主探索、讨论交流、点拨与练习
教学程序:
一、激活目标
出示主题图花坛,花坛的周长指什么?出示自行车,车轮的周长指什么?出示画有圆而且标出直径的正方形,这个圆的周长指什么?你能想出几种办法测量圆的周长?
二、活动建构
1、测量大小不同的四个圆的周长与直径,填表并计算。探究与发现:周长与直径的关系。(借助计算器)
2、介绍圆周率的由来。
任意一个圆的周长与它的直径的商都是一个固定的数,我们把它叫做圆周率,用字母π来表示。圆周率=周长÷直径,即π=c÷d。“π”的由来:π是第十六个希腊字母,是希腊文圆周率的第一个字母,大数学家欧拉在一七三六年开始,在书信和论文中都用π来代表圆周率。
组织学生阅读资料,谈感受。
3、推导出:c=πd或c=2πr
4、计算花坛的周长,解决相关问题。
圆形花坛的直径是20米,它的周长是多少米?自行车车轮的直径是50厘米,绕花坛一周车轮大约转动多少周?
三、解释应用
一种铲车的前轮半径0.4米,后轮直径1.6米。行驶时,后轮转一周,前轮转几周?
四、反馈测评
1、一个圆形喷水池的半径是5米,绕着它走一周,要走多少米?
15厘米
A
B
2、小蚂蚁从A点沿着这条曲线爬到B点,大约要爬多远的距离?
3、公园内有一个圆形人工湖,绕湖一周要走1570米,湖中心有一个小岛,从湖边到小岛架一座桥,桥长大约多少米?
五、课堂小结
我的最大收获是什么?我有什么遗憾?我有什么疑问?
希望同学们在探索数学奥秘的过程中体验快乐,经历成长,创造成功!同学们,再见。
圆的周长教案设计通用篇6
【教学目标】
1、让学生知道什么是圆的周长。
2、理解并掌握圆周率的意义和近似值。
3、初步理解和掌握圆的周长计算公式,能正确计算圆的周长。
4、培养和发展学生的空间观念,培养学生抽象概括能力和解决简单的实际问题能力。
5、通过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。
6、培养学生的观察、比较、分析、综合及动手操作能力。
【教学重点】
理解和掌握圆的周长的计算公式。
【教学难点】
对圆周率的认识。
【教学准备】
1、学生准备直径为5厘米、6厘米、7厘米的圆片各一个,有圆面的物体各一个,线,直尺,每组准备一只计算器。
2、教师准备图片。
【教学过程】
一、引课
(课件出示特克斯八卦城图片)同学们,你们知道这是哪吗?
对,这就是我们伊犁美丽的特克斯县的八卦城。它因八卦布局而闻名,是世界上最大、最完整的八卦城,同学们有机会一定要去看一看。
今年夏天,老师有辛来到了这里,照片上的就是八卦城中心广场的太极坛,老师绕太极坛的第一外环走了一圈,要想知道老师走这一圈是多少米?你们知道是要求什么吗?
对,圆的周长,那么究竟什么是圆的周长,怎样求圆的周长?这节课我们就来研究这个问题。(板书课题)
二、认识周长
1、请大家看,老师手里有一个圆,你知道圆的周长是指哪一部分吗?谁能给大家摸一摸(指名学生摸一摸)
师:摸的时候我们要注意确定一个点,从哪里开始到哪里结束。
2、那你们说说,什么是圆的周长?(生:圆一周的长度是圆的周长)看他多勇敢,谁还能说一说
3、那你们想圆是由什么线围成的呢?(曲线)
师:那我们可以说围成圆一周的曲线的长,就是圆的周长。
4、那谁有测量圆周长的方法?(绕线发,滚动法)
5、小组合作
请同学们拿出准备好的学具,现在请大家自己选择方法来测量这些圆的周长,好吗?
要求:
1)不管你用什么样的办法,只要你能得到圆的周长就可以,请一律用厘米做单位。
2)每个小组还有一个小表格,请同学们将测量好的结果填写在表格中的第一栏里,只需要完成第一栏就可以,不用写单位。
3)请同学们小组分工,合作完成(3分30秒)
6、我想问问大家,你们是怎样得到圆的周长的?
谁愿意到前面来给大家讲一讲,拿着你手里的圆
生1、用卷尺测量(直接用带刻度的卷尺,绕圆一周进行测量)
生2、用绳子测量(通过测量绳子的长度,来得到圆的周长)
生3、直尺滚动(在圆上做一个标记,再在直尺上滚动一周,可以得到圆的周长)
7、小结:那刚才我们同学不论是用尺子去量,还是把圆放在尺子上滚动,你最后得到的都是什么长度?(周长)这是一条什么呢?(直线)最后得到的都是一条直线。但是我们一开始我们研究了圆的周长实际上是一条什么的长?(曲线)说明我们可以把一条曲线化成一条直的线段来测量圆的周长(板书:化曲为直)在数学里,我们把这种思想称为化曲为直。
8、那是不是所有的圆,都能用我们刚才的方法来测量周长,想一想。
(生;非常大的和非常小的都不可以)
9、老师手中有一个绳,绳的一端有一个小球,当我挥动这个绳的时候,你想这个小球的运动轨迹会是一个什么图形?(圆)
其实,我们大家都做过这个实验是不是?看好了!(转动小球)
10、那我想问大家,刚才在空中旋转的这个圆,能通过刚才我们的方法来测量它的周长吗?(不能)
三、探究周长与直径的关系
1、那看来我们刚才找到的这些方法都有一定的局限。看来,我们也需要像研究长方形、正方形的周长一样,来找到一种做为普遍的一种公式,能够直接计算圆的周长
2、那现在请大家想一个问题,圆的周长到底和什么有关系?(半径、直径)
有说半径,有说直径,能说说你的理由吗?(指名说一说)
同学们都觉得和半径或直径有关系。
3、课件:请同学们认真的看大屏
这是一个圆,闪动的是圆的直径。仔细看(展开)这条线段是谁?(周长)
对,是这个直径是1分米的圆的周长。
再看(展开直径是0.8、0.6分米圆的周长)
4、通过刚才这3幅图,你发现什么了?(直径越长,他的周长就越长)
那看来确实直径可以决定圆的周长,是这样吗?
5、那现在请同学们继续我们刚才的测量,刚才我们只得到了圆的周长,对吗?现在就需要你再测量出手中这个圆的直径,那么你想找周长和直径之间的什么关系呢?(倍数)
6、为什么找倍数关系?(因为正方形的周长是边长的4倍)
你们同意吗?那咱们现在就按照同学所说的来继续刚才的活动,好吗?当你用周长除以直径时,一定要把结果除不尽的保留两位小数。
(这个小组非常好,有人测量,有人记录,有人计算,分工明确)
填完之后,互相说一说你发现了什么。
7、展示一个小组的数据
1)其他组也计算出来了是吧,我们不再往黑板上写了。
2)有没有算出来和黑板上不一样的?
3)是我们算错了吗?正方形的周长是边长的四倍,可以得到一个整数的结果。(结果有误差)
四、圆周率
1、那你们讨论出周长和直径的关系了吗?(3倍多一些)
2、那是不是所有的圆的周长都是圆的直径的3倍多呢?(看课件)
这是我们刚才得到的3个直径不同的圆的周长,那我们看一看他们之间是不是也有刚才我们同学所说的这种关系
3、怎么样?看来我们同学们得到的结论是正确的。确实,每个圆的周长都是它直径的3倍多一些。(板书)
4、那这3倍多一些说明什么?(圆的周长和直径之间确实有倍数关系)
5、我们说这3倍多一些就是固定不变的数,我们把它叫做圆周率,用字母来表示
6、老师这里有一个关于圆周率的资料,请大家仔细的看,认真的听。
通过刚才的资料你有什么收获?(取3.14、无限不循环小数)
7、师:刘徽:也是研究出了圆周率的关系
祖冲之:这是祖冲之,你们知道吗,1967年国际天文学家联合会把月球上的一座环形山命名为“祖冲之环形山”,将小行星1888命名为“祖冲之星”你们知道为什么吗?
8、板书:圆周率用希腊字母来表示,一般保留两位小数(3.14)
那现在谁知道怎么计算圆的周长?能得出什么样的公式?
字母公式:C=d
知道半径怎么求周长?C=2r
小结:这两个公式都可以计算出圆的周长,那现在咱们要做一些有关的练习,你们愿意做吗?
圆的周长教案设计通用篇7
【教学内容】
《义务教育课程标准实验教材数学》六年级上册第62~64页。
【教学目标】
1.通过小组合作探究,实际测量计算理解圆周率的意义。
2.通过对比分析掌握圆周长的计算公式。
3.能用圆的周长的计算公式解决一些简单的数学问题。
4.通过对圆周率的计算,渗透爱国主义的思想。
【教学重、难点】
重点:推导圆的周长的计算公式,准确计算圆的周长。
难点:理解圆周率的意义。
【教学过程】
一、情景引入
出示一块钟表
问题1:你能猜想小秒针的顶端在一分钟的时间里,所走过的轨迹是一个什么图形吗?
学生猜想。
教师演示小秒针的运动过程,证实学生的猜想是否正确。
问题2:你能知道不知疲倦的小秒针顶端,在一个小时的时间内所走过的路程有多长吗?我们应该怎样解决这个问题呢?
生:先计算出走一圈的路程有多长,在计算出走60圈的长度。
师:非常好。那么小秒针走一圈的路程,就是这个圆的周长又怎么来求呢?今天我们就来学习怎样计算圆的周长。(引入课题——圆的周长)
(设计目的:通过学生身边的实物引入新课,能充分的调动学生的学习积极性,把学生的注意力集中到课堂中来。)
二、动手量一量
学生活动:请同学们拿出你准备好的圆,小组内交换圆,合作完成下表,看哪一组完成的最快。测量值精确到毫米。
物品名称
周长
直径
1号圆
2号圆
3号圆
4号圆
教师评价学生小组合作的情况。
(设计目的:强调学生的小组合作意识)
师:哪个小组汇报一下你们小组是怎么测量的,并展示一下小组测量的结果。
学生展示小组的成果。
(设计目的:通过实物投影,向其它小组的同学展示本小组的结果,增强学生的自信)
三、对比分析
师:观察一下我们得到的几组数据,你发现什么规律了吗?
学生自由谈。
学生发现:1.一个圆的周长总是直径的三倍多点。2.周长和直径的比值与直径相乘可以得到圆的周长。
师:老师也做了一个圆,现在看一下老师是怎么测量这个圆的周长的。
课件展示圆的周长的测量方法。
(设计目的:通过让学生对比分析表格,教师课件展示圆的周长的测量过程,让学生能对圆的周长和直径之间的关系更加清晰,激发学生想要知道两者之间的具体关系的热情)
课件展示:圆的周长随直径的变化而在变化,而周长和直径之间的比值确是一个定值。
(设计目的:通过课件展示,让学生得到结论——圆的周长和直径的`比值是一个定值,顺利得到圆周率的值)
小结1:圆周率:一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做——圆周率,用字母π表示。圆周率是一个无限不循环小数。它的值是:π=3.1415926535……,在实际的应用中,一般取它的近似数π≈3.14。
你知道吗?我们的祖先在圆周率的计算上可是有着辉煌的成绩的,你能讲给同学们听吗?
学生自由谈。
我们有这么伟大的祖先,相信我们这些站在伟大巨人肩膀上的现代中国人一定能取得更加辉煌的成绩。
(设计目的:通过学生讲故事渗透爱国主义思想)
小结2:你能通过分析表格得到圆的周长的计算公式了吗?
学生回答。(由于学生已经有了前面的层层铺垫和对表格的分析学生可以很容易的回答这个问题。)
圆的周长(用字母C表示)计算公式:C=πd或C=2πr
四、动手做一做
下面我们来看看怎样应用圆的周长计算公式来解决问题。
1.计算圆的周长
实物投影展示学生的解题过程
(设计目的:通过简单的图形计算让学生理解圆周长的计算公式的应用,并强调解题的书写过程)
2.一个圆形喷水池的半径是5m,它的周长是多少米?
(设计目的:通过转化把由半径求周长的问题转化为实际问题,让学生体会到学以致用)
3.小组交流错误原因。(可让其他学生避免同样的错误)
(设计目的:通过实例计算,可以让学生更好的理解数学来源于生活,又能解决实际的生活问题的作用,又可为最后的实践题打下很好的伏笔)
4.现在你能告诉大家不知疲倦的小秒针顶端,在一个小时的时间内所走过的路程了吗?要解决这个问题你想得到什么样的数据。
(设计目的:让学生自己寻找解决问题的条件,培养学生的独立思考能力。此题和前面的引入题互相呼应,做到解决问题有始有终)
五.你能说说在这一节课中你有什么收获吗?
可让学生从知识点,从测量方法——能力点,数学史知识——情感态度价值观等方面总结自己的收获。
六、课外合作:
小组合作完成,应用你的知识,想办法测量一下,从学校大门口到圆城楼门口的距离大约是多少米。
(设计目的:让学生真正能够达到学习上的学以致用,并且培养学生的小组合作意识和学生的动手能力)
圆的周长教案设计通用篇8
一、指导思想与理论依据:
《新课标》指出:有效的数学学习活动不能单纯的依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的的重要方式。数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。
根据这一理念,在本节课的设计上,我突出两点,一是让学生主动经历数学结论的猜想动手操作,实践验证以及表述的过程;二是对学生放手,还学生自主的空间,自主探究,合作交流的学习方式贯穿课堂的始终。
二、教材及学情分析:
教材是在学生掌握了长方形和正方形周长,并初步认识了圆的基础上学习的。它是学生初步研究曲线图形的基本方法的开始,又是后面学习“圆的面积”以及今后学习圆柱、圆锥等知识的基础。学情分析:学生虽然有计算直线图形周长的基础,但第一次接触曲线图形,概念比较抽象不容易理解,推导圆周长的计算方法、理解圆周率的含义会有一定的困难。
三、教学目标、重点及难点:
1、知识和技能:
使学生直观认识圆的周长,掌握圆的周长的计算方法,理解圆周率的意义,并能正确灵活应用计算公式解决简单的实际问题。
2、过程与方法:
(1)通过组织学生观察和实验等活动,引导学生经历“猜想-验证-归纳、概括”的学习过程,认识圆周率。
(2)经历圆的周长计算公式的发现、探索过程,培养学生分析、抽象、概括,以及发现规律的能力。
3、情感与态度:
(1)通过学生动手操作、发现,激发学习兴趣,使学生体验探究问题的乐趣;
(2)结合圆周率的介绍,使学生受到爱国主义科学精神的教育。
(3)在解决问题过程中,增强应用意识。
教学重点:
让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程理解并掌握圆的周长计算方法。
教学难点:
对圆周率的认识。
教学准备:
⒈圆形物体实物,。
⒉每个学生准备三个大小不同的圆片,一根线,一把直尺。
四、教法:
1、自主探究法。通过学生动手实践,寻求测量圆周长的方法,培养学生动手操作的能力,激活学生的思维。
2、合作交流法。合作交流是学生学习数学的主要方式。通过学生的团结协作,自主探索,讨论交流,培养学生的团结合作精神,激发学生主动学习的兴趣。
五、主要教学环节与设计:
通过以下环节教学本课:
一、创设情境,初步感知二、合作交流,探究新知三、实践应用,解决问题四、畅谈收获,课外延伸
六、教学过程:
第一个环节:创设情境,初步感知师:
哪些同学会骑自行车?在骑车时,车轮向前滚动一周,行驶了多长的路程?怎样计算?(出示车轮向前滚动的录像。)
生:求行驶多长的路程就是求圆形的周长。
师:今天就来学习怎样计算圆的周长。
此环节的设计目的:从学生熟悉的自行车入手,让学生感知求车轮滚动一周就是求圆的周长,激发学生学习新知的兴趣。
第二个环节:合作交流、探究新知
(一)直观感知什么圆的周长通过以下活动帮助学生认识什么是圆的周长。
1、请你指出老师手中圆形物体的周长。准备一些实物有硬币、茶杯垫,让学生用手在圆周上滑摸等方式认识并理解圆的周长。
2、分析比较长方形、正方形和圆的周长各有什么不同?
3、指一指、描一描自己手中圆片的周长。
设计意图:让学生动手摸一摸后,初步感知圆的周长就是圆一周的长度。更增强了对圆周长的感性认识,并形象理解圆周长的意义。
(二)探究圆周长的计算方法
圆周长计算公式的推导这一内容,我安排了三个环节:
1、揭示矛盾,产生探索新知欲望。请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?
预设的几种情况:
(1)“滚动”——把实物圆沿直尺滚动一周;
(2)“缠绕”——用绳子缠绕实物圆一周并拉直;
(3)“折叠”——把圆形纸片对折几次,再进行测量和计算;
小结:以上的几种方法都是要“化曲为直”。
出示地球图片。
如果要计算地球赤道一周的长度,用刚才的绕线法、滚动法显然都无法测量怎么办?我们需要探讨求圆周长的一般方法。
设计意图:这个过程中让学生明白“缠绕”、“滚动”的方法是有局限性的,引发其探索“计算公式”的积极性、必要性,为深入研究圆周长的计算问题作好了“心理”铺垫。这样的矛盾,反而更能激发学生的求知欲。2、操作实验,探究圆周长计算方法在这一内容中,探究圆周率,理解圆周率是本课的难点,因此我设计让学生分小组合作,通过“猜想——实验验证——归纳概括得到结论”来完成。
(1)猜想,目的是让学生体会周长与直径之间的关系,重点解决“周长与什么有关”的问题。
师:圆的周长与它的.什么有关呢?
生:圆的周长与它的直径有关。圆直径长,周长就大;直径短,圆周长就小。
(2)实验验证,目的是让学生发现周长与直径之间固定的倍数关系,重点解决“周长与直径有怎样的实质关系”的问题。
师:我们知道正方形周长是边长的4倍,那么圆的周长是直径的几倍呢?我们能不能像求正方形周长那样找到求圆周长的一般方法呢?
请同学们分组做个小实验,请利用手中的学具,用你喜欢的方法验证圆的周长与直径的倍数关系,记录在表格中。请你按照“我们组利用什么方法——过程怎样——结果如何”的顺序汇报实验过程
小组汇报:
生:我们测量的第一个圆直径是10厘米,周长是31厘米,周长是直径的3.1倍。第二个圆直径是2厘米,周长是6.5厘米,周长是直径的3.25倍。第三个圆直径是5.5厘米,周长是16.5厘米,周长是直径的3倍。
师:通过计算你们发现了什么?
生:每个圆的周长,都是它的直径长度的3倍多一些。
追问:那么是不是所有的圆周长与它直径都有这种关系呢?
最后师生共同概括出:任何一个圆的周长总是它的直径长度的3倍多一些。
师:由于测量时存在误差,导致结果不太一样,这很正常。你们的研究结果已经很接近数学家的结果了。谁知道我们把这个3倍多一些的数叫做什么?
生:圆周率。
师:你对圆周率还有哪些了解?
这个3倍多一些的数经过数学家周密计算发现是一个固定不变的数,我们把这个倍数叫做圆周率。读作π。对圆周率的发现最杰出的贡献者是祖冲之。圆周率是一个无限小数,在科技飞速发展的今天,计算机已经计算到了小数点后上亿位。小学阶段取它的近似值为3.14。板书:π≈3.14(出示相关的资料)
设计意图:通过同学们在小组中操作、交流、观察等活动,亲历感悟发现知识,达到理解的目的。圆周率有的学生早已知道,圆周率的有关知识是在师生共同补充交流中得到的,体现以学生为主体。祖冲之的事迹是一个非常好的爱国主义教育的典型。使学生感受到中国文化的博大精深,发展学生的情感态度价值观目标。
(3)得出结论师:你知道圆周长的计算方法了吗?
生:知道。
板书公式:C=πd,C=2πr
设计意图:推导圆周长公式,解决好了圆周率的问题,圆的周长的计算方法只是水到渠成的结果。
第三个环节:实践应用,解决问题
这一环节是对我们所探究结果的运用,即运用圆周长的计算公式来解决生活中的实际问题。
1、解决刚上课时提出的问题:车轮向前滚动一周,行驶了多长的路程?做到首尾呼应。
2、设计了三道有梯度的练习:①d=5米,C=?②r=5厘米C=?③C=6.28米d=?3、明辨是非,下面的说法对吗?
①π=3.14()
②大圆的圆周率小于小圆的圆周率。()
③圆的周长是它的半径的2π倍。()
意图:设计有关圆周率的判断,是帮助学生巩固新概念,加深对圆周率的理解。
第四个环节:畅谈收获,课外延伸作业:
赤道就像地球的“腰带”,它的长度大约是4万千米。你知道地球的半径大约是多少吗?
设计意图:在课堂即将结束时,我设置了与前面相呼应的求赤道周长的课外的拓展。这样的设置,把课堂的教学延伸到课外,提高学生的学习能力。
你有什么收获?(引导学生总结所学内容,学习方法,获得情感态度等体验。)
七、板书设计:
圆的周长
化曲为直圆的周长÷直径=圆周率
C÷d=π3.14×20=62.8(英寸)
C=πd答:车轮向前滚动一周,行驶了62.8英寸。
C=2πr