《鸡兔同笼》教学设计及设计意图教案(精选8篇)
来源:整理
《鸡兔同笼》教学设计及设计意图篇1
教学目标
1.了解”鸡兔同笼”问题,感受中国古代数学问题的趣味性。
2.尝试列表枚举、算术、方程等不同的方法解决“鸡兔同笼”问题,体验解决问题方法的多样性,提高解决实际问题的能力。
3.通过自主探索、合作交流,培养合作意识和逻辑推理能力。
4.体会数学问题在日常生活中的应用,进而体会数学的价值。
学情分析
“鸡兔同笼”题目是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。教材在本单元安排“鸡兔同笼”题目,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。
教材的编排有以下特点:
1.教材首先通过富有情趣的古代课堂,生动地呈现了在《孙子算经》中记载的“鸡兔同笼”题目,并通过小精灵的提问激发学生解答我国古代著名数学题目的爱好。
2.注重体现解决“鸡兔同笼”题目的不同思路和方法。
3.让学生进一步体会到这类题目在日常生活中的应用。
教学重点:亲历列表、假设、方程等解题的过程,体会解决问题的一般策略。
教学难点:建构解决“鸡兔同笼”问题的数学模型,运用学到的解题策略解决生活中的实际问题。
教学过程
活动1【导入】激趣导入引发思考
导语:同学们,通过课前的游戏老师发现你们真是爱思考的孩子,那今天我们就带着思考一起走进《鸡兔同笼》,鸡和兔大家都很熟悉了,谁能用数学的语言说一说鸡和兔各有什么特点?瞧,两条腿的鸡和四条腿的兔相遇了,这时候有几个头,几条腿?如果一群鸡和兔关在同一个笼子里,我们要研究什么呢?看,问题来了。
课件出示:笼子里有若干只鸡和兔,从上面数,有12个头;从下面数,有32条腿。鸡和兔各有几只?(全班齐读)
活动2【活动】合作交流预设生成
(一)这个问题课前你们通过自学都有了自己的想法,现在请你们把自己研究的收获和小组的同学交流交流,等一下大胆地上台展示自己的研究成果。开始吧!(学生交流)
(二)老师刚才听了你们的交流,老师发现同学们的思维真的很活跃,谁愿意第一个上台展示?掌声有请第一个小勇士上讲台给大家交流他解决问题的方法,大家要认真倾听,随时向这位同学提问。
1.生:我是这样想的,假设鸡为0只,兔为12只的时候,腿数为48;当鸡的只数为1只,兔为11只的时候,腿为46,依次类推,当鸡为8只,兔为4只的时候,腿就刚好是32.这样都得出了鸡为8只,兔为4只。
请同学们观察分析这些数据,你发现了什么?(鸡兔共12只;鸡的只数在逐一增多;兔的只数在逐一减少;腿的条数也在减少;鸡增加一只兔减少一只,腿数减少两条)追问:腿的条数是怎样减少的?谁的只数变化使腿数减少?反过来观察你有什么发现吗?(因为鸡和兔的只数是固定的,每增加一只兔子减少一只鸡,腿的总只数就增加2条。)
(1)还有哪些同学与他的方法相同或类似?你们认为这种方法有什么特点?这位同学的这个方法按顺序一个一个列举下来,不容易遗漏,我们取个名字记住它吧!(板书:逐一列举)
(2)还有一个同学也用了逐一列举法,为什么有的要用9次找到正确答案,有的只要5次呢?
(3)说得真好,你还注意到腿的条数跟实际情况越接近,试的次数会越少,真是好样的。除了逐一列举的方法,还有其他方法吗?
(4)取中列举和跳跃列举方法的同学汇报,说出是如何确定第一组数据的?计算验证后发现了什么问题?如何调整的?谁还有不同的调整策略?问:你们觉得这种方法怎么样?(简便、快捷)
重点追问:计算验证后发现什麽,怎样想到用这种方法进行调整的?
(三)回顾与交流
回顾一下我们的解题思路和方法,首先我们根据已知信息进行尝试猜测,发现腿数不符合实际情况,我们这时要认真分析然后进行合理调整,这样才能更快找到正确答案。(板书:分析调整)你最喜欢那种列举方法?为什么?
谢谢同学们还有其他的方法解决这道题吗?
(四)继续交流分享
2.生:我先假设全都是鸡,那么就有24条腿,比实际的腿少了32-24=8条。多的这8条腿就是由于我们把兔当作了鸡,每只兔鸡少算了2条腿,所以用8除以2就得到了兔的只数,兔是4只,鸡只有8只。
师:大家听懂这个方法了吗?你有什么问题要提出来的?没关系,我们请12个小朋友充当小动物来演一演帮忙同学们理解一下这种方法。
(学生表演,借助学生表演理解算术解法每一步的意思)
师:如果假设全都兔呢?你们会解决吗?对手试试看。(学生动手试做,然后汇报)。
3.生:我用的是画图的方法。我们先画12个圆代表12个头,然后个头添上2条腿,就一共添了24条腿,这个时候鸡的腿数齐了,剩下8条腿的全是兔的腿了,每只兔子还差2条腿,所以再给每只兔子添上两条腿,这样就可以添4只兔子,所以有4只兔子,有8只鸡。
生:我觉得这个方法和列举法一样,如果数目较多的时候,画图就麻烦了。
师:这道题用画图的方法可行吗?
生:数目简单的时候可行。
师:这也就解决问题的一种策略,如果数目较多,我们可以把图画在心中,心中想怎么画就可以了。下面有请其他小组进行汇报。
4.生:我们小组是用抬腿法来做的。我们先让每只动物抬起一条腿来,这样就还剩下了26-8=18条腿,我们再让每只动物再抬一次腿,这个时候就还剩下了18-8=10条腿了。这10条腿全都是兔子的了。所以兔子有5只,鸡有3只。
师:这个方法就是古人的奇思妙想,你们也想到了,真好!有兴趣的同学课后可以看课本的阅读资料,也可以和同学们演一演,研究研究。
小结过渡:古人的一道趣题引发了我们的思考,我们从不同角度,用不同方法进行研究都能解决这个趣题,这就是数学的魅力啊!孩子们,其实《鸡兔同笼》趣题早在1500年前就记载在孙子算经里头,作为我国古代留下来的文化遗产,后来还流传到了日本,那日本的《龟鹤问题》和我们学的有什么相似之处呢?
《鸡兔同笼》教学设计及设计意图篇2
一、教学目标
1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、在解决“鸡兔同笼”的活动中,尝试通过列表举例、画图分析、尝试计算、列方程等方法解决鸡兔的数量问题。
3、培养学生的合作意识,在现实情景中,使学生感受到数学思想的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。
二、教材分析
1、设计意图
通过向学生提供了现实、有趣、富有挑战的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,从多角度思考,运用多种方法解题,学生可以应用作图法、列表法(逐一列表法、跳跃式列表法、取中列表法)、假设法、列方程解决问题。学生根据自己的经验,逐步探索不同的方法,找到解决问题的策略,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。
2、设计思路
遵照《新课程标准》的精神,在课程设置中强调学生是学习的主人,在学习过程中尽可能多的为学生提供探索和交流的空间,鼓励学生自主探索与合作交流。通过教师创设的现实情景,让学生投入解决问题的实践活动中去,自己去研究、探索、经历数学学习的全过程,从而体会到假设的数学思想的应用与解决数学问题的关系。通过学习使学生认识到数形结合的重要性,提高学生分析问题和解决问题的能力。
在学习中应注意鼓励每个学生参与学习过程,注重学生之间交流,使学生共同学习,共同进步,共同提高,把所学的数学知识应用到生活中去,用数学的眼光看待身边的事物,体会数学的价值。
3、教学重点
体会解决问题策略的多样化,培养学生分析问题、解决问题的能力。
三、教学设计
1、提出问题
师:(出示主题图)大约在1500年前,《孙子算经》中记载了这样一个有趣的问题。书中说:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”
问:这段话是什么意思?(生试说)
师:这段话意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。问笼中鸡和兔各有几只?这就是我们通常所说的鸡兔同笼问题,如何解决这个1500年前古人提出的数学问题,就是我们这节课要研究的内容。
(板书课题:鸡兔同笼问题)
2、解决问题
师:说明为了研究方便,我们不妨先将题目的条件做一个简化。
(课件出示)例1:鸡兔同笼,有8个头,26条腿,鸡、兔各有几只?(同时出示鸡兔同笼情境图)
师:同学们不妨先讨论一下,看能不能给大家提供一种或几种解这道题的思路,让其它的同学能很容易就理解、弄懂这道题。(学生讨论)
学生初步交流,教师提炼:可以用画图的方法、可以用列表法、可以用假设法、还可以用方程的方法。
师:请同学们先认真思考,以小组为单位展开讨论、交流,看看你们小组该选择什么方法来解决这个问题?再把你们的想法,你的思考过程用你自己的方式记录下来。
学生思考、分析、探索,接下来小组讨论、交流、争辩。(老师参与其中,启发、点拔、引导适当,师生互动。)
小组活动充分后进入小组汇报、集体交流阶段。
师:谁能说一说你们小组探究的过程,你们是怎样得出结论的?鸡兔各有几只?
学生汇报探究的方法和结论:
(1)画图法
(学生展示画图方法及步骤)
①先画8个头。
②每个头下画上两条腿。
数一数,共有16条腿,比题中给出的腿数少26-16=10条腿。
③给一些鸡添上两条腿,叫它变成兔。边添腿边数,凑够26条腿。
每把一只鸡添上两条腿,它就变成了兔,显然添10条腿就变出来5只兔。这样就得出答案,笼中有5只兔和3只鸡。
(2)列表法
师:同学们的探索精神和方法都很好,都能用自己的方法成功地解决“鸡兔同笼问题”。不过上面的两种方法,老师还是觉得比较麻烦,又是画图,又是列表的,有没有更方便简洁的方法来解决这个问题?
(3)假设法
教师引导:观察上面的表格我们发现。如果8只都是鸡,则一共只有16条腿这样就比26条腿少10条腿,这是因为实际每只兔子比每只鸡多2条腿。一共多了10条腿,于是兔就有10÷2=5(只),所以我们还可以这样去想:
板书:方法一:假设8只都是鸡,那么兔有:
(26-8×2)÷(4-2)=5(只)
鸡有:8-5=3(只)
同样如果8只都是兔,则一共只有32条腿这样就比26条腿多6条腿,这是因为实际每只鸡比每只兔子少2条腿。一共多了6条腿,于是鸡就有6÷2=3(只),所以我们还可以这样去想:
板书:方法二:假设8只都是兔,那么鸡有:
(4×8-26)÷(4-2)=3(只)
兔有:8-3=5(只)
(4)列方程
我们还可以根据“鸡的腿+兔的腿=26条”列方程解答:
解:设兔有X只,那么鸡有(8-X)只。
4X+2(8-X)=26,
16+2X=26
2X=26-16
X=3
8-3=5(只)
即鸡有3只,兔有5只。
师:通过以上的学习,你有什么发现,有什么想法吗?
生:解决一个问题可以有不同的方法。
3、想一想,做一做
(1)尝试解答课前提出的古代《孙子算经》中记载的鸡兔同笼问题。书中说:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?
(2)完成书中练一练中的4道题。
《鸡兔同笼》教学设计及设计意图篇3
教学目标:
1、使学生了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、能尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设方法的一般性。
教学重点:会用画图法、列表法和假设法解答“鸡兔同笼”问题。
教学难点:用合理的方法解答生活中的“鸡兔同笼”问题。
教具准备:多媒体课件、表格等。
教学过程:
一、创设情境、揭示课题。
1.播放《奔跑吧,兄弟》主题曲,同学们,你们知道这是什么节目的主题曲吗?
2.播放视频,介绍:20xx年4月24日这期的《奔跑吧,兄弟》中,各位跑男被带到有密码的房间里,陈赫遇到了这样一道题。
这道题被收在《孙子算经》中,《孙子算经》是我国古代一部非常重要的数学名著,今天,我们就来研究中国历史上著名的数学趣题“鸡兔同笼问题”。(板书课题)
2、我们先从简单一些的问题入手,来探讨解决这类问题的方法,好吗?大家请看。
出示题目:鸡兔同笼一共有8个头,一共有26条腿。鸡和兔各有几只?
二、合作探究、学习新知:
活动一:探究用猜测列表法解决“鸡兔同笼”问题。
学习方式:自学教材,小组合作交流
1.师:请大家自由读题,你们都知道了什么信息?
生:鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只?
师:还有补充吗?有两个隐藏条件看谁细心发现了?。
生:鸡有2条腿,兔子有4条腿。鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只?师评:他还发现了隐藏条件,审题真细心。
2.先猜一猜,鸡兔可能有几只?可能只有一种动物吗,为什么?
学生猜测,汇报。不可能都是鸡,因为如果都是鸡就会有16条腿,而题目中是26条腿。也不可能都是兔,因为如果都是兔就会有32条腿。
(1)师:我们采用列表法得出的答案,好吗?翻开书104页,按照顺序列表试一试。
(2)说一说你是怎么想的?从尝试举例过程中,你发现了什么规律?和小组的同学说一说。
(汇报交流)
小结讲解:鸡兔的总只数不变,多一只兔子就会少一只鸡,并会增加两只脚;多一只鸡就会少一只兔子,并会少两只脚。
活动二:探究用假设法解决“鸡兔同笼”问题。
学习方式:自学教材,小组合作交流。
小组1:假设全都是鸡:2×8=16(条)26-16=10(条)10÷2=5(只)??兔子8-5=3(只)??鸡谁有不懂得问题要问他?你们看看是不是这样:看演示板书“假设法。”
师:除了可以假设都是鸡,还可以怎样假设呢?
小组2:引导学生说出都是兔,并演示。
师:实际上,你们刚才的这些方法都运用了一种数学思想。你们知道是什么思想么?
师:真好,你们发现了数学中一种重要的数学思想,就是假设思想。如果我们学会了用假设的数学思想啊,那我们能解决生活中的很多很多问题,是不是啊。
小结:同学们,刚才我们用很多方法解决了同一个问题,你觉得这些方法的核心思想是什么?(假设。所以鸡兔同笼问题又叫假设问题。)
3、发散思考、加深理解。
下面我们来帮陈赫找到他房间的密码,解放他吧!
出示:鸡兔同笼,有35个头,94条腿,鸡兔各有几只?
师:我们发现课本上的假设法理解起来比较抽象,现在大家换一种假设法来思考。你们看,这样行不行?
生:是什么样的假设法,让我们先睹为快!
师:是这样的,如果让每只兔子都立起两条腿,这时,鸡和兔的脚数是相等的,接下来会出现什么样的情况呢?
生:每个头有两条腿,35个头是70条腿。(94-70)少了24条腿,正好可以求出兔子的只数,24除以2等于12。
生:鸡的只数为:35-12=23(只)。
关于《鸡兔同笼》教学设计及设计意图教案汇总的内容就收集整理到这里了,希望可以对有需要的朋友们提供一些帮助,大家可以结合实际情况来参考以上范文,以此来帮助自己顺利展开书写工作。如果这期内容对大家有所帮助,也请大家多关注本站。
《鸡兔同笼》教学设计及设计意图篇4
一、教学目标
(一)知识与技能
了解“鸡兔同笼”问题的结构特点,渗透化繁为简的思想,掌握用列表法、假设法,初步形成解决此类问题的一般性策略。
(二)过程与方法
经历猜测的过程,尝试用列表、假设的方法解决“鸡兔同笼”问题,引导学生有序思考,使学生体会解题策略的多样性。
(三)情感态度和价值观
在解决问题的过程中,培养学生的迁移思维能力,感受古代数学问题的趣味性。
二、教学重难点
教学重点:渗透化繁为简的思想,体会用假设法的逻辑性和一般性。
教学难点:理解用假设法解决“鸡兔同笼”问题的算理。
三、教学准备课件、实物投影。
四、教学过程
(一)情境导入
教师:同学们,大约一千五百多年前,我国古代数学名著《孙子算经》中记载了一道数学趣题——“鸡兔同笼”问题。
(板书课题:鸡兔同笼)出示主题图:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?
教师:这道题是以文言文的方式表述的,雉就是野鸡,哪位同学看懂它的意思了?
学生:笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚。鸡和兔各有几只?
教师:从题中获取信息,你知道了什么,要求什么问题?
(二)探究新知
1.尝试解决,交流想法。
既然“鸡兔同笼”问题能流传至今,就应该有它独特的思考方式和解题方法。
问题:同学们想一想,算一算鸡和兔各有多少只?2.感受化繁为简的必要性。
大家在刚才猜了好几组数据,经过验证都不正确,为什么猜不对呢?
数据大了不好猜,我们应该怎么办?我们把数字改小些,先从简单的问题入手。(课件出示例1)“笼子里有若干只鸡和兔。从上面数,有8个头,从下面数,有26只脚。鸡和兔各有几只?”
教师:从题中你们能获取哪些信息?和生活常识联系在一起,你还能说出哪些信息?
预设:学生1:鸡和兔共8只,鸡和兔共有26只脚。学生2:鸡有2只脚,兔有4只脚。
【设计意图】渗透化繁为简的思想,引导学生理解题意,找出隐藏条件,帮学生初步理解“鸡兔同笼”问题的结构特点。3.猜想验证。
教师:有了这些信息,我们先来猜猜,笼子可能会有几只鸡?几只兔?猜测需要抓住哪个条件?学生:鸡和兔一共有8只。
教师:是不是抓住这个条件就一定能马上猜准确呢?好,老师这里有一张表格,请大家来填一填,看看谁能又快又准确地找出答案来,开始。
学生汇报。
《鸡兔同笼》教学设计及设计意图篇5
教学目标:
1.认识和了解“鸡兔同笼”问题,初步掌握解决问题的策略与方法,体会解决问题策略的多样性。
2.经历解决问题的过程中,学习和体会“枚举”、“假设”等数学思想和方法,提高解决实际问题的能力。在解决问题的过程中归纳概括出鸡兔同笼问题的数学模型,进一步培养学生的合作意识和逻辑推理能力。
3.让学生感受古代数学问题的趣味性,受到祖国优秀数学文化的熏陶和感染,增强学习数学的乐趣。
教学重点:会用假设法和方程法解答“鸡兔同笼”问题。
教学难点:明白用假设法解决“鸡兔同笼”问题的算理。
教学用具:
多媒体课件。
教学过程:
一、创设情境,引入新课。
1、引入:
同学们,我们国家有着几千年的悠久文化,在我国古代更是产生了许多位数学家和许多部数学著作,《孙子算经》就是其中一部,大约产生于一千五百年前,书中记载着这样一道有名的数学趣题。你们想看一看吗?
今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?把它翻译成现代汉语是:现在有一些鸡和兔被关在同一个笼子里。鸡和兔共有35个头,94只脚。鸡和兔各有多少只?
这就是著名的“鸡兔同笼”问题,生活中类似的问题非常多,这类问题应如何解决呢?今天我们就来研究著名的“鸡兔同笼”问题。板书课题:“鸡兔同笼”。
为便于研究,我们先从简单的生活问题入手,请看下面问题。
●学校买来50张电影票,一部分是4元一张的学生票,一部分是6元一张的成人票,总票价是260元。两种票各买来了多少张?
【设计意图】以我国古代著名的鸡兔同笼问题引入,让学生感受我国悠久的数学文化,激起探知这类问题的兴趣。
二、自主学习、小组探究
对于这个问题你想用什么方法来解决呢?请根据提示思考解决问题的方案。
温馨提示:
①用列举法怎样解决问题?
②你能用画图的方法解答吗?
③如果把这些票都看成学生票或都看成成人票如何解答?
④回顾列方程解决问题的经验,怎样用方程解决问题?
学生自己根据提示用自己喜欢的方法解决问题。
先把自己的想法在小组内说一说,再共同协商解决。
教师巡视,要注意发现学生的不同解法,同时参与小组的指导。
三、汇报交流,评价质疑
对于解决这个问题,同学们一定有自己的好的方法,请把你的好办法同大家交流吧。
1.列举法。
可以有目的的先展示这种方法。(多媒体展示。)
学生票数(张)成人票数(张)钱数(元)
2525250
2426252
2327254
2228256
2129258
2030260
质疑:有50张票,是否有必要一一列举,你是如何列举的?
(引导学生通常先从总数的中间数列举。)
质疑:根据假设算出的钱数与实际总钱数不一样时,你是如何调整的?
(引导学生根据数据特点确定调整方向、调整幅度。)
师强调:像咱们这样,采用列表的方法列举出来,并最终找到答案的方法,在数学上叫列举法,也叫枚举法。(板书:枚举法)
2.假设法
(1)假设全是成人票:
①为了便于学生理解,展示假设为成人票,学生试画的分析图。(图略)
②引导:上面的过程如果用算式怎样表示呢?请同学们试试看。
(学生试着列算式,请两个学生到黑板上去板演。)
预设板演:
50×6=300(元)300-260=40(元)40÷(6-4)=20(张)
50-20=30(张)
③质疑:你这样做是如何想的?你是如何理解多出的40元的?根据多出的40元如何求出学生票和成人票的?
预设回答:
假设全是成人票,就50×6=300元,而实际花260元,这样就多出了300-260=40元。
而1张学生票看做成人票就比1张学生票多2元,学生票的张数就是40÷(6-4)=20张了,成人票就是50-20=30张。
(2)假设全是学生票:
如果假设成全是学生票该如何解答?(学生根据刚才的经验独立解答,交流时重点说清推理思路。)
总结方法归纳抽象出这类问题的模型。
学生票数=(成人票价×总张数-总钱数)÷(成人票价-学生票价).
成人票数=(总钱数-学生票数×总张数)÷(成人票价-学生票价).
3、方程法:
除了以上两种方法,还有别的计算方法了吗?
学生汇报列方程的方法。
(1)找出相等的数量关系。
(学生汇报,课件出示:成人票数+学生票数=50;成人钱数+学生钱数=260
元)
(2)根据等量关系列式:
设成人票有x张,则学生票有(50-x)张。
列方程为:6x+4(50-x)=260
(解略)
4.学生比较以上几种方法解题方法。
四、抽象概括,总结提升。
让学生结合自己解决问题的经验,用自己的语言进行总结。
列举法:适合数据比较简单的问题,但是如果数字比较大,这样一一列举法就太麻烦了。
画图法:操作简单,比较直观。但数字大的时候,画图也是比较麻烦的。
假设法:适合所有的这类问题,但比较抽象,不好理解。
方程法:适用面广,便捷,容易理解。
师:同学们,我们这节课研究“鸡兔同笼”问题,我们探讨出了用枚举法、假设法、解方程的方法解决这种题。只不过列举法对于数据较大时比较麻烦。一般我们采用假设法和解方程的方法比较简便。
【设计意图】通过适时的总结,引领学生归纳建立“鸡兔同笼”问题的模型,及解决这类问题的一般方法和策略。
五、巩固应用,拓展提高
1.今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各有几何?(回应开课时的问题。)
温馨提示:
A.先让学生认真读题,(同桌讨论)。
B.然后自己解决,汇报交流。交流时同时让学生感受中华民族悠久的数学文化。
2.王丽有20张5元和2元的人民币,一共是82元。5元和2元的人民币各有多少张?
处理方法:
①学生认真读题,引导学生对比“鸡兔同笼”问题模型,分析数量关系,然后选择合适的方法独立解答。
②小组内交流算法。
③全班交流。
【设计意图】本题是“鸡兔同笼”问题模型,在现实生活中的应用,鼓励学生用自己喜欢的方法解答。进一步巩固“鸡兔同笼”问题的各种解法,培养学生的实践应用能力。
3、巩固练习:回应解决例题,引导学生用合适的.方法计算。然后说一说在我们的生活中有类似鸡兔同笼的问题吗?(龟鹤问题、乘船问题、合作植树问题等)
【设计意图】让学生寻找生活中的鸡兔同笼问题,使学生感受到“鸡兔同笼”问题在生活中的广泛应用。
3、全课小结:
回顾总结,引发思考
本节课,我们在解决“鸡兔同笼”问题时,采用了几种策略,在这节课中,我发现同学们还有其他的解决方法,下课后相互交流一下,并尝试一下。
师总结:
这节课大家共同探究,解决了生活中类似“鸡兔同笼”问题的实际问题。只要我们善于动脑,好多问题都可以归为一类问题,抽象出一个总的模型进行解决。
《鸡兔同笼》教学设计及设计意图篇6
一、教学目标
1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、经历自主探究解决问题的过程,体验解决问题策略的多样化。了解列表法、假设法等解决问题的方法,在解决问题的过程中培养逻辑推理能力,增强应用意识和实践能力。
二、教学重难点
教学重点:渗透化繁为简的思想,体会假设法的逻辑性和一般性。
教学难点:理解用假设法解决“鸡兔同笼”问题的算理。
三、教学准备课件、实物投影。
四、教学过程
课前交流
1.教师:同学们,喜欢猜谜语吗?猜一猜这是什么动物?(鸡)答对了,这个呢?(兔子)对,都见过鸡和兔子吧?老师也画了一只,(出示头)观察一下,它是鸡还是兔子?(添上2条腿)现在知道是什么了吗?再添上几条腿就能变成兔子呢?对!再添上2条腿!你是怎么判断的?好,先猜到这,准备好了吗?我们开始上课,上课!
(一)情境导入
2.我们今天要研究的内容就与鸡和兔有关,他们之间会发生什样的数学问题呢,让我们穿越时空隧道,回到1500年前,走进数学名著《孙子算经》(播放视频)
3、揭示课题
这道题是什么意思啊?生:。。。。。。师:正有此意。
这节课,我们就来研究鸡兔同笼问题。(板贴:鸡兔同笼)
(二)探究新知
1.你能发现什么数学信息?35个头,是什么意思?说明什么?94只脚呢?
仔细思考,还有什么隐藏的信息吗?(鸡有2条腿,兔有4条腿,一只兔比一只鸡多2条腿)
同样是找信息,深度却不一样。
2、利用以上信息现在你能快速算出鸡和兔各有几只吗?看来有难度,数太大了是吗?那我们把数改小一些,从简单的问题入手,看能不能找到解决问题的方法。
3.(出示例1)这个问题课前你们通过预习都有了自己的想法,现在请把自己研究的收获和小组的同学交流交流,请先阅读交流提示。好,开始吧。
(师:江南好生:风景旧曾谙)
师:谁愿意第一个上台展示,大家要认识倾听、随时向他提问。(逐一列举的)
生1:我是按顺序找的,先算7只鸡和一只兔,一共有18条腿,不对,我继续找6只鸡和2只兔,一共有20条腿,也不对,再找5只鸡和3只兔,一共22条腿,不对,再继续找4只鸡和4只兔,一共有24条腿,还不对,继续找3只鸡和5只兔,正好是26条腿,所以鸡有3只,兔有5只,大家同意吗?谢谢,谁有疑问或补充?XXX
生2:我是这样找的,我从中间开始找的,我先找4只鸡和4只兔,一共有24条腿,答案不对,我就继续往后找,3只鸡和5只兔,正好有26条腿,所以鸡有3只,兔有5只。大家同意吗?谁有疑问或补充?
生3质疑:你为什么从中间开始找?(这样比较简单)算出来24条腿,为什么往后找,不往前找?(因为算出来24条腿少了,所以往后找,增加兔的只数,减少鸡的只数)
生4:假如你找到的腿数比26多,应该怎么调整?(减少兔的只数,增加鸡的只数)我听明白了,谢谢!
师小结:
在一问一答中,我们就找到了解决问题的方法,真好。我们来看(PPT)
第一个同学是按顺序把所有情况都列举了出来,像这样,根据一定的规律,按顺序把所有的可能性都列举出来,这种思考问题的方法就是有序思考。有序思考可以让我们做到不重不漏。
另一个同学是从中间开始列举的,无论怎样找,都根据26腿这个条件进行了调整,从而找到了鸡和兔的只数,真棒,刚才我们用到的方法就是列表法(PPT列表法)
4、现在你能用列表法快速解决这道题了吗?为什么不能,太麻烦了是吗?怎么办?那我们继续研究刚才那道题,你觉得有什么更为简单的办法吗?(可以用画图的方法)刚才巡视的时候,我发现一个同学是这样解决这道题的,请他来讲讲好吗?(出示做了一半的算式及画图)
生:用8个圆表示8个头,每个头下面先画2条腿,此时有16条腿,列式为2X8=16(条)比实际少了几条腿?列式是26-16=10(条)
师:刚才这位同学把它们全都看成鸡,也就是假设全是鸡(板贴)给每只鸡先画了两条腿,这时有16条腿,与实际相比,少了10条腿。我们接着往下想,这10条腿应该怎么办呢?怎么添?拿出探究单2,先想一想,再用不同颜色的笔画一画,添一添,并接着列出算式。开始吧!
(完成的同学可以同桌交流你的方法)
(师:日出江花红胜火生:春来江水绿如蓝)
都完成了吗?哪个同学上台展示你的方法?
生1:我先把它们都看做鸡,给每只鸡添上2条腿,这时候一共有2X8=16(条)腿,题目中是26条腿,我算了算,少了10条腿,我就继续给每只鸡添上2条腿,一共添了5次,才凑成了26条腿,就是把5只鸡变成兔子,最后算出来鸡有3只,兔有5只。谁有疑问或补充?
生2:你为什么先画了8只鸡?(假设全是鸡)2X8=16(条)是什么意思?(假设全是鸡以后,有16条腿)为什么又添腿?(题目中是26条腿,我算了算少了10条腿,)为什么2条2条的添?(因为一只兔看做鸡少了2条腿,)10÷2=5中的2是什么意思?(一只兔子看做鸡少算了2条腿)我听明白了,谢谢!
生1:不客气!
5、下面我想请8个同学上台扮演这些小动物,帮助同学们理解题意。
快点看看桌洞,请拿到头饰的同学快速戴好,到黑板前面向大家站成一排,假设全是鸡,现在一共有多少条腿?(16条)16条与实际相比少了(10条)少的是谁的腿?(兔子的腿)也就是说有一群兔子混进了小鸡群里当卧底是吗?我们一起把它们找出来。把1只小鸡换成一只兔子,就能增加2条腿,那咱们一起喊一声变,从这只小鸡开始,一个一个地就抬起前腿好吗?来,变,够了吗?继续喊变,够了吗?那变,够吗?再变,可以了吗?再变,现在呢?可以了,我们一起来看,把几只小鸡变成了兔子,(5只)来,场务,上道具。现在看,有(3)只鸡,(5)只兔。
谢谢你们精彩的表演帮助我们理解了题意。
6、现在请同学们闭上眼睛回想刚才解决问题的过程。(PPT播放)
首先我们假设全是鸡,给每只鸡添上了2条腿,一共添了16条腿,列式为2X8=16(条)与实际相比,少了10条腿,列式为26-16=10(条)接着我们就2条2条的添腿,一共添了5次,把5只鸡换成了兔子,所以兔子就有5只,列式为:10÷2=5(只)那么鸡就有3只,列式为:8-5=3(只)
师:我们一起来看(板书过程)假设全是鸡,(板贴假设)一共有16条腿,16条腿和26条腿相比,少了10条腿,(板贴对比)那我们就给他调整腿数,1只兔子看成鸡,少了2条腿,所以2条2条地添,一共添了5次,也就是有5只兔子被看做了鸡,我们就把5只鸡换成5只兔子,所以,兔就有10÷2=5(只)鸡就有8-5=3(只)哎,同学们,这个10÷2=5(只)中的2是什么意思?
生:一只兔子被看做鸡少了2条腿
也就是鸡和兔的腿数差是吗?你能用一个算式表示出2的意思,让人一眼就能知道它指的是什么吗?
生:4-2=2(条)
师:4是指谁的腿?2呢?后面的2呢?其实也就是鸡和兔的腿数差是吗?
添上这个算式,过程才能更清楚,完整,现在思路理清了,这样看,解决这个问题需要几个算式?(5个)请同学们快速把探究单进行完善。
7、刚才我们用假设全是鸡的方法,很快算出了鸡和兔的只数,能不能假设全是兔?在练习本上画一画,算一算。(汇报交流算法)
生:假设全是兔,一共有几条腿(32条腿)比实际多了6条腿,说明有鸡被看做了兔,把1只兔子换成1只鸡,就可以减少2条腿,也就是要把3只兔子换成3只鸡,所有鸡有3只,兔有5只。
8、对比两种方法。刚才我们用假设全是鸡或假设全是兔的方法解决了问题,这种方法叫做假设法。仔细观察这两组算式,你有什么发现?注意:假设全是鸡,先算出来的是兔的只数,假设全是兔,先算出来的就是鸡的只数。这两种方法,你更喜欢哪一种,为什么?
(三)知识运用学生独立完成古代趣题
1、用假设法解决孙子算经的原题。
不画图,你能用假设法解决这道题了吗?用你喜欢的方法在练习本上试试看。
完成的同学可以同桌对对答案。谁来说说看,你是怎样算的?
生1:。。。。。。。。和我一样的同学请举手,谁有疑问或补充?
生2:35×2=70是什么意思?。。。。。。。。
师:同学们真棒,都能帮古人解决问题了。
(四)小结提升
我国的鸡兔同笼传到日本后又被称为龟鹤问题。你会算吗?试一试(出示)
学生自己先解决,再汇报!说的不是鸡和兔的事呀,为什么还可以用鸡兔同笼的解法做?它们有什么联系吗?也就是这里的鹤相当于谁?都同意吗?龟呢?(多媒体出示)看来找到和鸡兔同笼之间的关系,问题就简单多了。
(人民币问题)这道题呢,你能找到鸡和兔的影子吗?
(租船问题)这道呢?鸡和兔的影子又在哪呢?
(小结方法)谁来说一说怎样从题中快速的找到总腿数?(最大的那个数)总头数呢?(两种不同类型的总个数)每一种各有多少个,就是腿数。腿数少的就是(鸡)腿数多的就是(兔)。
好了,现在请同学们回顾一下,这节课你有什么收获?
回想这节课的研究过程,我们先发现了复杂的解决不了的问题,然后从简单问题入手,找到了解决问题的办法,这就是数学上经常用到的方法——化繁为简,然后从简单的问题中发现方法,从而解决了复杂问题。(PPT出示)
其实鸡兔同笼问题的解法还有很多呢,除了这节课我们学习的列表法、假设法,还有五年级将要学习的方程法,除此之外,还有数学家们想出的很多奇思妙想,感兴趣的同学可以课下研究。(PPT)探索的脚步永不停止,希望你们都能做一个善于思考、乐于追求的孩子。这节课我们就上到这,下课!
《鸡兔同笼》教学设计及设计意图篇7
一、说教材
1.教材分析
“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中,也是奥数教材中的经典名题。而新课标揭去了它令人生畏的面纱,正式编入教材,借鸡兔同笼这一问题的解决过程,让学生体会和掌握基本的解决问题的策略,渗透一些数学思想方法,还其生动有趣的一面,这也正是“数学广角”所承载的基本任务。通过学习,不仅能使学生感受到祖先的聪明才智,而且体会到解题策略的多样性以及其中蕴含的丰富的数学思想方法,培养学生探索的兴趣和能力。基于以上分析,我将本课的教学目标确定为以下几点:
2.教学目标
(1)了解“鸡兔同笼”问题,感受古代数学问题的趣味性,从中发现其特殊的规律。
(2)借助列表、画图、假设、方程等方法解决相关的实际问题,体验解决问题方法的多样化,体会代数方法的一般性。
(3)培养学生的逻辑推理能力,让学生体会到数学问题在日常生活中的应用价值。
3.教学重难点
教学重点:尝试用不同的方法解决“鸡兔同笼”问题。
教学难点:探索用多种方法解决同一问题的策略。
二、说教学方法
本课教学力求改变过去重知识轻能力、重结果轻过程、重教法轻学法的状况,在教学过程中我主要采用猜测尝试、自主探究、小组合作、讨论交流等方法组织教学,引导学生经历解决问题策略的探索过程,体验学习的乐趣,感受数学的价值。
三、说教学流程
1.问题引入,揭示课题
我们都知道:“儿童是有个性的人,他们的活动受兴趣和需要的支配,一切有效活动必须以某种兴趣作为先决条件。”新课开始,我出示《孙子算经》中的鸡兔同笼问题,并通过小精灵挑战性的提问“这个问题你能解决吗”唤起学生解答我国古代著名数学问题的兴趣,产生探究的欲望,既为下面的学习做好了心理铺垫,又自然地引出了课题。
2.自主探究,学习新知
(1)呈现探究素材。笼子里有若干只鸡和兔,从上面数,有8个头,从下面数,有26只脚。鸡和兔各有几只?
【设计意图:此环节考虑到“鸡兔同笼”原题的数据较大,不便于学生探究学习,因此,我根据化难为易的思想,避繁就简,用这个数据较小的同类问题进行替换,消除了学生因为数据过大而产生的恐惧心理,贴近学生的“最近发展区”,增强了探究的自信心。】
(2)出示探究提纲。
①从题中你得到了哪些数学信息?联系生活实际,想一想鸡和兔各有几只脚?(看似简单又是现实中司空见惯的指向性问题,恰好是解决“鸡兔同笼”问题的必经之路,也是关键所在,它的出示确保了学生自学的效果。)
②请自学课本第113―114页的内容,并标注出你不理解的地方。(当学生俯下身子静心自学时,我充分关注学生的自学表现,借助眼神或表情提示不够专注的学生,收集梳理学生自学时遇到的疑惑,为下一步合作学习做好准备。)
③自由选择合作伙伴,讨论解决自学中遇到的困惑,理解不同的解题思路。(有困难才合作,有问题才讨论。让学生根据自己的需求选择合作伙伴,可以是同桌互助,可以是小组合作,也可以是师生互动,营造出活而不乱的学习氛围。)
【设计意图:自主学习是新课程改革的主旋律,“以学生为主体”是当代教学的基本思想,也是学生终生学习的基础。但是,学生由于认知能力的局限,在自学课本时往往不能很到位地理解某些知识,形成思考后的思维断点,产生模糊的认识。为了避免学生自学的盲目性,确保自学环节的实效,使学生养成有序思考的习惯,我设计了以上三个探究提纲。】
3.汇报交流,深化理解
学生通过自主探究、同伴互助,已经有了自己解决这个问题的方法,这时组织学生在全班展示交流,他们个个有话可说,争先表达,说出了解决同一问题的多种方法。
(1)列表法:通过填写教材中提供的表格,多数学生不重复、不遗漏地写出了所有答案,也就是“逐一列表法”。还有部分反应较快的学生受到“逐一列表法”的启发,通过估计,发现了鸡兔只数的大致范围,即“跳跃列表法”。更有甚者,提出了较为简便的“取中列表法”。
(这时我对学生的积极表现给予及时的肯定,正在学生得意之时,我追问:“还有其他的方法吗?”唤起了他们更强烈的表达欲望。)
(2)画图法:动手能力较强的学生,用“”表示头,用“|”表示脚。先画8个头,有的学生给每个头下画了2只脚,共有16只脚,比题中给出的脚少了10只,2只2只地添,添5次刚好26只脚,得到笼中有3只鸡、5只兔;也有的学生给每个头下都画4只脚,结果比题中给出的脚多了6只,2只2只地划去,划3次后刚好是26只脚,得到了相同的答案。
【设计意图:“数无形,少直观;形无数,难入微。”利用数形结合,使抽象的鸡兔同笼问题直观化、生动化,也为理解假设法做好了铺垫。】
(3)假设法:学生利用已有的经验还发现了用“假设法”解答此题的思路,先假设全部都是鸡或全部都是兔,再计算实际与假设之间总脚数的差,最后推理出鸡和兔的只数。
方法一:
解:设全是鸡。
8×2=16(只脚)
26-16=10(只脚)
兔:10÷(4-2)=5(只)
鸡:8-5=3(只)
答:有兔5只,有鸡3只。
(4)方程法:当有学生提出用方程解答这个问题时,我顺势引导,让全体学生都参与到分析说理的过程,突出了代数方法的一般性。
方法一:
解:设有兔x只,有鸡(8-x)只。
4x+2(8-x)=26
4x+16-2x=26
16+2x=26
2x=26-16
x=5
鸡:8-5=3(只)
答:有兔5只,有鸡3只。
【设计意图:此环节,我组织学生全班交流,旨在使他们分享自学成果、产生思维共鸣,感受到同一个问题竟然有这么多的解法!整个课堂也因此而精彩不断。】
4.运用新知,回扣主题
以数据较小的“鸡兔同笼”问题为载体,使学生在经历自学找疑、合作解疑、交流提升的过程中掌握了“鸡兔同笼”问题中所蕴含的多种数学思想方法,再去解决课前设问的《孙子算经》中鸡兔同笼的原题,既巩固了所学知识,又回扣了主题。“你想知道古人是怎样解决‘鸡兔同笼’问题的吗?”自然地把学生的注意力吸引到课本114页阅读资料上来了。
5.变式练习,拓展延伸
(1)有龟和鹤共40只,龟的腿和鹤的腿共有112条,龟、鹤各有几只?
(2)大船乘6人,小船乘4人,全班一共有38人,共租了8条船,每条船都坐满了,大小船各租了几条?
《鸡兔同笼》教学设计及设计意图篇8
一、教学目标:
1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、在解决“鸡兔同笼”的活动中,尝试通过列表举例、画图分析、尝试计算、列方程等方法解决鸡兔的数量问题。
3、培养学生的合作意识,在现实情景中,使学生感受到数学思想的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。
二、教材分析:
(一)设计意图:
通过向学生提供了现实、有趣、富有挑战的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,从多角度思考,运用多种方法解题,学生可以应用作图法、列表法(逐一列表法、跳跃式列表法、取中列表法)、假设法、列方程解决问题。学生根据自己的经验,逐步探索不同的方法,找到解决问题的策略,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。
(二)设计思路:
遵照《新课程标准》的精神,在课程设置中强调学生是学习的主人,在学习过程中尽可能多的为学生提供探索和交流的空间,鼓励学生自主探索与合作交流。通过教师创设的现实情景,让学生投入解决问题的实践活动中去,自己去研究、探索、经历数学学习的全过程,从而体会到假设的数学思想的应用与解决数学问题的关系。通过学习使学生认识到数形结合的重要性,提高学生分析问题和解决问题的能力。
在学习中应注意鼓励每个学生参与学习过程,注重学生之间交流,使学生共同学习,共同进步,共同提高,把所学的数学知识应用到生活中去,用数学的眼光看待身边的事物,体会数学的价值。
教学重点:体会解决问题策略的多样化,培养学生分析问题、解决问题的能力。
三、教学设计:
<一>、提出问题
师:(出示主题图)大约在1500年前,《孙子算经》中记载了这样一个有趣的问题。书中说:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”
问:这段话是什么意思?(生试说)
师:这段话意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。问笼中鸡和兔各有几只?这就是我们通常所说的鸡兔同笼问题,如何解决这个1500年前古人提出的数学问题,就是我们这节课要研究的内容。
(板书课题:鸡兔同笼问题)
<二>、解决问题
师:说明为了研究方便,我们不妨先将题目的条件做一个简化。
(课件出示)例1:鸡兔同笼,有8个头,26条腿,鸡、兔各有几只?(同时出示鸡兔同笼情境图)
师:同学们不妨先讨论一下,看能不能给大家提供一种或几种解这道题的思路,让其它的同学能很容易就理解、弄懂这道题。(学生讨论)
学生初步交流,教师提炼:可以用画图的方法、可以用列表法、可以用假设法、还可以用方程的方法。
师:请同学们先认真思考,以小组为单位展开讨论、交流,看看你们小组该选择什么方法来解决这个问题?再把你们的想法,你的思考过程用你自己的方式记录下来。
学生思考、分析、探索,接下来小组讨论、交流、争辩。(老师参与其中,启发、点拔、引导适当,师生互动。)
小组活动充分后进入小组汇报、集体交流阶段。
师:谁能说一说你们小组探究的过程,你们是怎样得出结论的?鸡兔各有几只?
学生汇报探究的方法和结论:
1:画图法:(学生展示画图方法及步骤)
①先画8个头。
②每个头下画上两条腿。
数一数,共有16条腿,比题中给出的腿数少26-16=10条腿。
③给一些鸡添上两条腿,叫它变成兔.边添腿边数,凑够26条腿。
每把一只鸡添上两条腿,它就变成了兔,显然添10条腿就变出来5只兔.这样就得出答案,笼中有5只兔和3只鸡。
2.列表法:
(展示学生所列表格)
学生说明列表的方法及步骤:
学生汇报:我们先假设有8只兔这样一共就有16条腿,显然不对,再减去一只鸡,加上一个兔,这样一个一个地试,把结果列成表格,最后得出3只鸡、5只兔。
鸡87654321
兔01234567
脚161820222426
鸡87654321
兔01234567
脚161820222426
学生汇报:我们组得出的结果也是只3鸡、5只兔,但我们不是一个一个地试,这样太麻烦了,我们是2个2个地试。
鸡8643
兔0245
脚16202426