初中数学整式的加减优秀教案设计大全(精选6篇)

来源:网络

初中数学整式的加减教案篇1

一、三维目标。

(一)知识与技能。

能运用运算律探究去括号法则,并且利用去括号法则将整式化简。

(二)过程与方法。

经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力。

(三)情感态度与价值观。

培养学生主动探究、合作交流的意识,严谨治学的学习态度。

二、教学重、难点与关键。

1、重点:去括号法则,准确应用法则将整式化简。

2、难点:括号前面是—号去括号时,括号内各项变号容易产生错误。

3、关键:准确理解去括号法则。

三、教具准备。

投影仪。

四、教学过程,课堂引入。

利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?

五、新授。

现在我们来看本章引言中的问题(3):

在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么它通过非冻土地段的时间为(t-0.5)小时,于是,冻土地段的路程为100t千米,非冻土地段的路程为120(t-0.5)千米,因此,这段铁路全长为100t+120(t-0.5)千米①

冻土地段与非冻土地段相差100t—120(t-0.5)千米②

上面的式子①、②都带有括号,它们应如何化简?

利用分配律,可以去括号,合并同类项,得:

100t+120(t-0.5)=100t+120t+120(-0.5)=220t-60

初中数学整式的加减教案篇2

教学目标:

1.理解同类项的概念,在具体情景中认识同类项.

2.初步体会数学与人类生活的密切联系.

教学重点:理解同类项的概念.

教学难点:根据同类项的概念在多项式中找同类项.

教学过程:

一、复习引入

1.创设问题情境

(1)5个人+8个人=;?

(2)5只羊+8只羊=;?

(3)5个人+8只羊=.?

2.观察下列各单项式,把你认为类型相同的式子归为一类.

8x2y,-mn2,5a,-x2y,7mn2,,9a,-,0,0.4mn2,,2xy2.

由学生小组讨论后,按不同标准进行多种分类,教师巡视后把不同的分类方法投影显示出来.

要求学生观察归为一类的式子,思考它们有什么共同的特征?

请学生说出各自的分类标准,并且肯定每一位学生按不同标准进行的分类.

二、讲授新课

1.同类项的定义:

我们常常把具有相同特征的事物归为一类.8x2y与-x2y可以归为一类,2xy2与-可以归为一类,-mn2、7mn2与0.4mn2可以归为一类,5a与9a可以归为一类,还有、0与也可以归为一类.8x2y与-x2y只有系数不同,各自所含的字母都是x、y,并且x的指数都是2,y的指数都是1;同样地,2xy2与-也只有系数不同,各自所含的字母都是x、y,并且x的指数都是1,y的指数都是2.

像这样,所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.另外,所有的常数项都是同类项.比如,前面提到的、0与也是同类项.

2.例题:

【例1】判断下列说法是否正确,正确地在括号内打“√”,错误的打“×”.

(1)3x与3mx是同类项.()

(2)2ab与-5ab是同类项.()

(3)3x2y与-yx2是同类项.()

(4)5ab2与-2ab2c是同类项.()

(5)23与32是同类项.()

【例2】指出下列多项式中的同类项:

(1)3x-2y+1+3y-2x-5;

(2)3x2y-2xy2+xy2-yx2.

【例3】k取何值时,3xky与-x2y是同类项?

【例4】若把(s+t)、(s-t)分别看作一个整体,指出下面式子中的同类项.

(1)(s+t)-(s-t)-(s+t)+(s-t);

(2)2(s-t)+3(s-t)2-5(s-t)-8(s-t)2+s-t.

3.课堂练习:请写出2ab2c3的一个同类项.你能写出多少个?它本身是自己的同类项吗?

三、课时小结

1.理解同类项的概念,会在多项式中找出同类项,会写出一个单项式的同类项,会判断几个单项式是否是同类项.

2.这堂课运用到分类思想和整体思想等数学思想方法.

3.学习同类项的用途是为了简化多项式,为下一课的合并同类项打下基础.

四、课堂作业

若2amb2m+3n与a2n-3b8的和仍是一个单项式,则m与n的值分别是.?

第2课时合并同类项

教学目的:

1.理解合并同类项的概念,掌握合并同类项的法则.

2.渗透分类和类比的思想方法.

教学重点:正确合并同类项.

教学难点:找出同类项并正确地合并.

教学过程:

一、复习引入

为了搞好班会活动,李明和张强去购买一些水笔和软面抄作为奖品.他们首先购买了15本软面抄和20支水笔,经过预算,发现这么多奖品不够用,然后他们又去购买了6本软面抄和5支水笔.问:

1.他们两次共买了多少本软面抄和多少支水笔?

2.若设软面抄的单价为每本x元,水笔的单价为每支y元,则这次活动他们支出的总金额是多少元?

二、讲授新课

1.合并同类项的定义:

(学生讨论问题2)可根据购买的时间次序列出代数式,也可根据购买物品的种类列出代数式,再运用加法的交换律与结合律将同类项结合在一起,将它们合并起来,化简整个多项式,所得结果都为(21x+25y)元.

由此可得:把多项式中的同类项合并成一项,叫做合并同类项.(板书:合并同类项.)

2.例题:

【例1】找出多项式3x2y-4xy2-3+5x2y+2xy2+5中的同类项,并合并同类项.

根据以上合并同类项的实例,让学生讨论、归纳,得出合并同类项的法则:

把同类项的系数相加,所得的结果作为系数,字母和字母指数保持不变.

【例2】下列各题合并同类项的结果对不对?若不对,请改正.

(1)2×2+3×2=5×4;(2)3x+2y=5xy;

(3)7×2-3×2=4;(4)9a2b-9ba2=0.

【例3】合并下列多项式中的同类项:

(1)2a2b-3a2b+0.5a2b;

(2)a3-a2b+ab2+a2b-ab2+b3;

(3)5(x+y)3-2(x-y)4-2(x+y)3+(y-x)4.

(用不同的记号标出各同类项,会减少运算错误,当然熟练后可以不再标出.其中第(3)题应把(x+y)、(x-y)看作一个整体,特别注意(x-y)2n=(y-x)2n,n为正整数.)

【例4】求多项式3×2+4x-2×2-x+x2-3x-1的值,其中x=-3.

试一试把x=-3直接代入例4这个多项式,可以求出它的值吗?与上面的解法比较一下,哪个解法更简便?

(通过比较这两种方法,使学生认识到:在求多项式的值时,常常先合并同类项,再求值,这样比较简便.)

3.课堂练习:课本P65练习第1,2,3题.

三、课时小结

1.要牢记法则,熟练正确地合并同类项,以防止出现类似2×2+3×2=5×4的错误.

2.从实际问题中类比概括得出合并同类项法则并能运用法则,正确地合并同类项.

四、课堂作业

课本P69习题2.2的第1题.

第3课时去括号

教学目标:

1.能运用运算律探究去括号法则,并且利用去括号法则将整式化简.

2.经历带有括号的有理数的运算,发现去括号时符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.

教学重点:准确应用去括号法则将整式化简.

教学难点:括号前面是“-”号,去括号时,括号内各项要变号,容易产生错误.

初中数学整式的加减教案篇3

一、导入

师:如果你有一罐硬币,分别为一角、五角、一元,你会怎么数?

生:一元的分一起,五角的一起,一角的一起等等。

师:这样是不是就比放在一块数方便多了,我们现在用的这个叫什么方法?

生:分类!

师:对,分类,提到生活中的钱大家都会分了。如果换成数学中的单项式,大家还会给它们分类吗?

二、教学过程

(板书:a3-2a4a33a)

师:我举个例子a3-2a4a33a,用硬币的思路,哪些属于同一面值的,应该把哪些看作一元的或5角的?

生:略

师:利用同样的方法,给下列单项式分类

(出示小黑板)

板书分出的类别

师:我们为什么要这样分类?是不是因为它们有共同点?那共同点是什么?

生:相同字母,且相同字母的指数也相同。

师:对,像具有这样相同特点的单项式,我们就把它们称之为同类项!猜想一下同类项的概念应该是怎么样的?

生:略

师:看课本P63中间(读出定义)学生画下来

练习同类项,老师在黑板上给出一个单项式,学生自己写两个以上的同类项,然后找几个学生读出自己写的,大家评论!

师:大家思考一下这些同类项之间可以进行加减运算吗?

师:比如说,我们刚才提到的硬币,是不是一元的和一元的就属同类项了,五角的和五角的属于同类项。我左手拿一个一元硬币,右手拿三个一元硬币,他们能加起来吗?

板书1硬币+3硬币=4硬币

师:我们现在试一下把硬币换成字母会是什么效果

1x+3x=4x

师:怎么计算的?

生:(1+3)x

师:1x+3x=(1+3)x这种形式我们是不是似曾相识呢?

分配律!(简单的再说一下分配律,反过来就是把两个或几个加数的共同因素提取出来)

师:这里提到“共同因素”,作为同类项的几个单项式之间是不是都有共同因素,我们同样可以把它们提取出来,这样同类项之间就能进一步的运算了。我们把这样的运算叫做合并同类项

猜想合并同类项的定义,然后看课本P63下面,定义画下来

试做题7×2+2x+7+3x-8×2-6

师:我们前面学习过的交换律、分配律、结合律在这里可以用吗?

师:因为多项式中的字母表示的是数,所以我们也可以运用交换律,结合律、分配率把多项式中的同类项合并。

开始做题,做完题之后

注意:

(1)合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分的系数不变

(2)指出计算结果按某字母降幂(升幂)的形式排列

(3)一找,二搬,三并,四计算

讲解例题1

练习题第一题(学生写上黑板)

纠错(小黑板)

三、小结

1、什么是同类项?

2、几个常数项是不是同类项?

3、同类项与系数有关吗?

4、什么叫合并同类项?

5、合并同类项的步骤是什么?

四、课下练习

P69习题1.2第一题

感谢您花时间阅读本文。如果您觉得初中数学整式的加减教案这篇文章对您有所帮助,我们非常希望您能够将其分享给更多的人。最后我们将继续努力,为您提供更多有价值的内容。祝您生活愉快!

初中数学整式的加减教案篇4

教材与学情分析:

本节课的教学内容去括号是中学数学代数部分的基础知识,是以后化简代数式、分解因式、配方法等知识点中的重要环节,对于初一学生来说接受该知识点存在一个思维上的转换过程,所以又是一个难点,因此该知识点在初中数学教材中有特殊的地位和重要作用。

教学目标:

知识目标:

1、学生经过观察、合作交流、讨论总结出去括号的法则,并较为牢固的掌握。

2、能正确且较为熟练地运用去括号法则化简代数式。

能力目标:

1、培养学生观察、分析、归纳能力。

2、培养学生语言概括能力和表达能力。

情感目标:

1、让学生感受知识的产生、发展及形成过程,培养探索精神。

2、通过学生间的相互交流、沟通,培养他们的协作意识。

教学重难点:

重点:去括号时符号的变化规律。

难点:括号外的因数是负数时符号的变化规律。

教法与学法分析:

1、分目标突破法

2、小组合作探究

教学过程

一、目标一:掌握去括号法则

1、情境引入

由图书馆人数增减问题得出两个等式。

2、小组探究等式特点,试着找到去括号规律,并理解去括号的依据是乘法分配律。

a+2(b+c)=a+(2b+2c)

a-2(b+c)=a-(2b+2c)

从而得出去括号法则。

3、巩固练习去括号法则,找出去括号时的注意事项。

小试牛刀

去括号

(1)x+(-y+3)=

(2)x-2(-3-y)=

(3)-(x-y)+3=

(4)3-(x+y)=

乘胜追击

判断正误,把错误的改正过来。

(1)x2-(3x-2)=x2-3x-2

(2)7a+(5b-1)=7a+5b-1

(3)2m2-3(3m+5)=2m2-9m-5

二、目标二:会去括号、合并同类项

1、温故知新

同类项、合并同类项复习

2、例题学习

化简:

a-2(5a-3b)+(a-2b)

化简下列各式

(1)-3(1-2a)+3a

(2)2×2+3(2x-x2)

(3)5(3a2b-ab2)-4(-ab2+3a2b)

3、解决问题

飞机的无风速度为akm/h,风速为20km/h.

则飞机顺风时的速度为______km/h.

则飞机逆风时的速度为______km/h.

飞机顺风飞行4h和飞机逆风飞行3h的行程差是多少?

三、战无不胜

当a是整数时,试说明:

(a3-3a2+7a+7)+(3-2a+3a2-a3)一定是5的倍数

四、总结要点五、巩固提升

板书设计

整式的加减(二)

———去括号

去括号法则:

如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。

如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

注意:

1、都不变,或都变

2、别漏乘。

初中数学整式的加减教案篇5

教学目标

1.知识与技能

能运用运算律探究去括号法则,并且利用去括号法则将整式化简.

2.过程与方法

经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.

3.情感态度与价值观

培养学生主动探究、合作交流的意识,严谨治学的学习态度.

重、难点与关键

1.重点:去括号法则,准确应用法则将整式化简.

2.难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误.

3.关键:准确理解去括号法则.

教具准备

投影仪.

教学过程

一、新授

利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?

去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;另外,括号内原有几项去掉括号后仍有几项.

二、范例学习

化简下列各式:

(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).

思路点拨:讲解时,先让学生判定是哪种类型的去括号,去括号后,要不要变号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号.为了防止错误,题(2)中-3(a2-2b),先把3乘到括号内,然后再去括号.

解答过程按课本,可由学生口述,教师板书.

三、巩固练习

1.课本第68页练习1、2题.

2.计算:5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2.[5xy2]

思路点拨:一般地,先去小括号,再去中括号.

四、课堂小结

去括号是代数式变形中的一种常用方法,去括号时,特别是括号前面是“-”号时,括号连同括号前面的“-”号去掉,括号里的各项都改变符号.去括号规律可以简单记为“-”变“+”不变,要变全都变.当括号前带有数字因数时,这个数字要乘以括号内的.每一项,切勿漏乘某些项.

初中数学整式的加减教案篇6

一、教材分析:

1、教材所处的地位和作用:

从数学科学本身看,方程是代数学的核心内容,正是对于它的研究推动了整个代数学的发展,从代数中关于方程的分类看,一元一次方程是最简单的代数方程,也是所有代数方程的基础.教科书将本节内容安排在第一节,一方面是对小学学段已经学过的有关算术方法解题和简单方程的运用的进一步发展,另一方面考虑引入一元一次方程后,可以尽早渗透模型化的思想,使学生尽早接触利用一元一次方程解决实际问题的方法.

《课程标准》对本课时的要求是通过具体实例归纳出方程及一元一次方程的概念,根据相等关系列出方程.让学生在归纳和总结的过程中,初步建立数学模型思想,训练学生主动探究的能力,能结合情境发现并提出问题,体会在解决问题中与他人合作的重要性,获得解决问题的经验.

2、教学目标:

根据课标的要求和本节内容的特点,我从知识技能、数学思考、情感价值观三个方面确定本节课的目标:

知识技能目标

①通过对实际问题的分析,让学生体验从算术方法到代数方法是一种进步,归纳并理解一元一次方程的概念,领悟一元一次方程的意义和作用.

②在学生根据问题寻找相等关系、根据相等关系列出方程的过程中,培养学生获取信息、分析问题、处理问题的能力.

③使学生经历把实际问题抽象为数学方程的过程,认识到方程是刻画现实世界的一种有效的数学模型,初步体会建立数学模型的思想.

数学思考目标

用字母表示未知数,找出相等关系,将实际问题抽象为数学问题,通过列方程解决.

情感价值目标:

让学生体会到从算式到方程是数学的进步,渗透化未知为已知的重要数学思想.体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学习数学的热情.

3、重点、难点:

结合以上目标,我在认真研究教材的基础上,立足学生发展的宗旨,确定了本节课的教学重难点.

教学重点:知道什么是方程、一元一次方程,找相等关系列方程.

教学难点:思维习惯的转变,分析数量关系,找相等关系。

二、教学策略:

如何突出重点,突破难点,从而达到教学目标的实现呢?在教学过程我运用了如下教法与手段:

1.生活引路,感知概念背景;

2.比较方法,明确意义;

3.感受过程,形成核心概念;

4.运用新知,巩固方法;

5.归纳总结,巩固发展.

本节课利用多媒体教学平台,从学生熟悉的实际问题开始,将实际问题“数学化”建立方程模型.采用教师引导,学生自主探索、观察、归纳的教学方式。

三、学情分析:

根据本节课的内容特点及学生的心理特征,在学法上,极力倡导了新课程的自主探究、合作交流的学习方法.通过对学生原有知识水平的分析,创设情境,使数学回到生活,鼓励学生思考,探索情境中的所包含的数量关系,学生在经历“建立方程模型”这一数学化的过程后,理解学习方程和一元一次方程的意义,培养学生抽象概括等能力.

四、教学过程:

本节课的教学过程我设计了以下六个环节:

(一)情景引入

采用教材中的情景

在这个环节中我提出了三个问题:

问题1:从上图中你能获得哪些信息?

问题2:你会用算术方法求吗?

问题3:你会用方程的方法解决这个问题吗?

(二)学习新知

在这个环节中,我首先提出一个问题:“如果设中山市到深圳市的路程为·千米,怎样用式子表示中山市与东莞市的距离以及中山市与惠州市的距离?”,这样,学生就会主动结合图形,根据在《整式的加减》中学到的知识解决问题.

通过上述思考过程,学生已经初步了解到寻找已知量与未知量之间存在的相等关系是利用方程解决实际问题的关键所在.

然后我结合上面的过程简单归纳列方程解决实际问题的步骤并给出方程的概念.

解决实际问题的步骤:(1)用字母表示问题中的未知数;(2)根据问题中的相等关系,列出方程.(17世纪的法国数学家迪卡尔最早使用·,y,z等字母表示未知数,而我国古代则用“天元、地元、人元、物元”等表示未知数,而且要比西方早1000多年,这说明我们中华民族是一个充满智慧和才干的伟大民族.)

在这里我介绍了字母表示未知数的文化背景,其目的就是在文化层面上让学生进一步理解数学、喜爱数学,展示数学的文化魅力,这正是培养学生情感价值观的体现.

方程的概念:含有未知数的等式叫方程.小学里已经给出了方程的概念,这里可适当处理.

在这里我开始向学生渗透列方程解决实际问题的思考程序.

(三)讨论交流

讨论1:比较列算式和列方程两种方法的特点.

列算式:只用已知数,表示计算程序,依据是间题中的数量关系;

列方程:可用未知数,表示相等关系,依据是问题中的等量关系。

通过讨论,学生体会到了:用算术方法解题时,列出的算式只能用已知数,而列方程时,方程中既含有已知数,又含有用字母表示的未知数,这就是说,在方程中未知数(字母)可以和已知数一起表示问题中的数量关系.

而且随着学习的深入,学生会逐步体会到从算式到方程是数学的进步。

紧接着的思考让全班学生参与学习的过程,从而进一步地拓宽了学生的思维.

讨论2:对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?

在这个讨论活动中,我采取了先小组合作交流后全班交流.

通过交流后,学生中出现如下结果:

从学生的分析所得,这两种设未知数的方法就是在以后学习中将遇到的直接设元和间接设元两种设元.

要求出路程,只要解出方程中的·即可,我们在以后几节课中再来学习.

在这个环节里,问题的开放有利于培养学生的发散思维。这样安排的目的是使所有的学生都有独立思考的时间和合作交流的时间。

(四)初步应用

学生在小学已经学过简易方程,通过以下的例题和练习可以回顾已经学过的知识,并为一元一次方程提供素材。

1、例题:根据下列问题,设未知数并列出方程:

(1)用一根长24㎝的铁丝围成一个正方形,正方形的边长是多少?

(2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?

(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?

2、课堂练习:这一组例题和课堂练习的设置,其目的是让学生更进一步加强列方程解决实际问题的能力。

(五)再探新知

提取例题和练习中出现的方程请学生观察方程它们有什么共同的特点?然后达成共识:只含有一个未知数;未知数的次数是1.

在这个环节中,我引导学生观察方程特点,给出一元一次方程的概念

教师总结:只含有一个未知数,并且未知数的次数是1,这样的方程叫做一元一次方程.

思考:下列式子中,哪些是一元一次方程?通过思考辨析,使学生巩固一元一次方程的概念,把握住概念的本质.

(六)课堂小结

让学生先归纳,然后教师补充方式进行,主要围绕以下问题:

本节课学习了哪些主要内容?一元一次方程的三个特征是什么?从实际问题中列出方程的步骤及关键是什么?

五、课堂设计理念

本节课着力体现以下几个方面:

1、突出问题的应用意识。在各个环节的安排上都设计成一个个问题,使学生能围绕问题展开讨思考、讨论,进行学习。

2、体现学生的主体意识。让学生通过列算式与列方程的比较,分别归纳出它们的特点,从而感受到从算术方法到代数方法是数学的进步;让学生通过合作交流,得出问题的不同解法;让学生对一节课的学习内容、方法、注意点等进行归纳。

3、体现学生思维的层次性。教师首先引导学生尝试用算术方法解决问题,然后再引导学生列出含未知数的式了,寻找相等关系列出方程,在寻找相等关系、设未知数及作业的布置等环节中都注意了学生思维的层次性。

4、渗透建模思想。把实际问题中的数量关系用方程形式表示出来,就是建立一种数学模型,教师有意识地按设未知数、列方程等步骤组织学生学习,就是培养学生由实际问题抽象出方程模型的能力。

你会喜欢下面的文章?