三角形知识点归纳总结(精选8篇)

来源:网友

三角形知识点归纳总结篇1

等腰三角形的性质和判定:

性质:

1.等腰三角形的两个底角相等(简写成”等边对等角”)。

2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成”等腰三角形的三线合一”)。

3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。

4.等腰三角形底边上的垂直平分线到两条腰的距离相等。

5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。

6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。

7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。

判定:

在同一三角形中,有两条边相等的三角形是等腰三角形(定义)。

在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)

三角形知识点归纳总结篇2

1全等三角形的判定

1、一般三角形全等的判定

(1)边边边公理:三边对应相等的两个三角形全等(“边边边”或“SSS”)。

(2)边角公理:两边和它们的夹角对应相等的两个三角形全等(“边角边”或“SAS”)。

(3)角边角公理:两个角和它们的夹边分别对应相等的两个三角形全等(“角边角”或“ASA”)。

(4)角角边定理:有两角和其中一角的对边对应相等的两个三角形全等(“角角边”或“AAS”)。

2、直角三角形全等的判定

利用一般三角形全等的判定都能证明直角三角形全等、

斜边和一条直角边对应相等的两个直角三角形全等(“斜边、直角边”或“HL”)、

注意:两边一对角(SSA)和三角(AAA)对应相等的两个三角形不一定全等。

2与三角形有关的角

1、三角形的内角

三角形的内角和等于180。

2、三角形的外角

三角形的一边与另一边的延长线组成的角,叫做三角形的外角。

三角形的一个外角等于与它不相邻的两个内角的和。

三角形的一个外角大于与它不相邻的任何一个内角。

3与三角形有关的线段

1、三角形的边

由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。相邻两边组成的角,叫做三角形的内角,简称三角形的角。

顶点是A、B、C的三角形,记作“△ABC”,读作“三角形ABC”。

三角形两边的和大于第三边。

2、三角形的高、中线和角平分线

3、三角形的稳定性

三角形具有稳定性。

4相似三角形的判定方法

由于从定义出发判断两个三角形是否相似,需考虑6个元素,即三组对应角是否分别相等,三组对应边是否分别成比例,显然比较麻烦。所以我们曾经给出过如下几个判定两个三角形相似的简单方法:

(1)如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似;

(2)如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似;

(3)如果一个三角形的两个角和另一个三角形两个角对应相等,那么这两个三角形相似。

5三角形的三边关系:

在三角形中,任意两边和大于第三边,任意两边差小于第三边。

设三角形三边为a,b,c

a+b>c

a+c>b

b+c>a

a—b<c<div=””>

a—c<b<div=””>

b—c<a<div=””>

在直角三角形中,设a、b为直角边,c为斜边。

则两直角边的平方和等于斜边平方。

在等边三角形中,a=b=c

在等腰三角形中,a,b为两腰,则a=b

在三角形ABC的内角A、B、C所对边分别为a、b、c的情况下,c2=a2+b2—2abcosc

6相似三角形

所谓的相似三角形,就是它们的形状相同,但大小不一样,然而只要其形状相同,不论大小怎样改变他们都相似,所以就叫做相似三角形。

三角对应相等,三边对应成比例的`两个三角形叫做相似三角形。

7相似三角形的判定方法有:

平行与三角形一边的直线(或两边的延长线)和其他两边相交,所构成的三角形与原三角形相似,

如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,

如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似,

如果两个三角形的三组对应边的比相等,那么这两个三角形相似,

直角三角形相似判定定理1:斜边与一条直角边对应成比例的两直角三角形相似。

直角三角形相似判定定理2:直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。

三角形知识点归纳总结篇3

一、目标与要求

1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形。

2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系。

3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题。

4.三角形的内角和定理,能用平行线的性质推出这一定理。

5.能应用三角形内角和定理解决一些简单的实际问题。

二、重点

三角形内角和定理;

对三角形有关概念的了解,能用符号语言表示三条形。

三、难点

三角形内角和定理的推理的过程;

在具体的图形中不重复,且不遗漏地识别所有三角形;

用三角形三边不等关系判定三条线段可否组成三角形。

四、知识框架

五、知识点、概念总结

1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2.三角形的分类

3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

7.高线、中线、角平分线的意义和做法

8.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

9.三角形内角和定理:三角形三个内角的和等于180°

推论1直角三角形的两个锐角互余;

推论2三角形的一个外角等于和它不相邻的两个内角和;

推论3三角形的一个外角大于任何一个和它不相邻的内角;

三角形的内角和是外角和的一半。

10.三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

11.三角形外角的性质

(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;

(2)三角形的一个外角等于与它不相邻的两个内角和;

(3)三角形的一个外角大于与它不相邻的任一内角;

(4)三角形的外角和是360°。

12.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

13.多边形的内角:多边形相邻两边组成的角叫做它的内角。

14.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

15.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

16.多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。

17.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。

18.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

19.公式与性质

多边形内角和公式:n边形的内角和等于(n-2)·180°

20.多边形外角和定理:

(1)n边形外角和等于n·180°-(n-2)·180°=360°

(2)多边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°

21.多边形对角线的条数:

(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。

(2)n边形共有n(n-3)/2条对角线。

综上所述,三角形是数学中的一个基本几何图形,具有丰富的形状和性质。在学习几何的过程中,掌握三角形的基本概念和性质是非常重要的。本文对常见的三角形知识点归纳总结,希望能够帮助读者更好地理解和掌握三角形的相关知识。

三角形知识点归纳总结篇4

直角三角形的判定:

判定1:有一个角为90°的三角形是直角三角形。

判定2:若a的平方+b的平方=c的平方,则以a、b、c为边的三角形是以c为斜边的直角三角形(勾股定理的逆定理)。

判定3:若一个三角形30°内角所对的边是某一边的一半,那么这个三角形是以这条长边为斜边的直角三角形。

判定4:两个锐角互余的三角形是直角三角形。

判定5:证明直角三角形全等时可以利用HL,两个三角形的斜边长对应相等,以及一个直角边对应相等,则两直角三角形全等。[定理:斜边和一条直角对应相等的两个直角三角形全等。简称为HL]

判定6:若两直线相交且它们的斜率之积互为负倒数,则这两直线垂直。

判定7:在一个三角形中若它一边上的中线等于这条中线所在边的一半,那么这个三角形为直角三角形。

三角形知识点归纳总结篇5

相似三角形:

简介:

三角分别相等,三边成比例的两个三角形叫做相似三角形(similartriangles)

相似三角形是几何中重要的证明模型之一,是全等三角形的推广。全等三角形可以被理解为相似比为1的相似三角形。相似三角形其实是一套定理的集合,它主要描述了在相似三角形是几何中两个三角形中,边、角的关系。

性质:

1.相似三角形对应角相等,对应边成比例

2.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比

3.相似三角形周长的比等于相似比

4.相似三角形面积的比等于相似比的平方

由4可得:相似比等于面积比的算术平方根

5.相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方

6.若a/b=b/c,即b²=ac,b叫做a,c的比例中项

7.a/b=c/d等同于ad=bc

8.不必是在同一平面内的三角形里

判定:

类比全等三角形的判定定理,可以得出下列结论:

定理1:两角分别对应相等的两个三角形相似。

定理2:两边成比例且夹角相等的两个三角形相似。

定理3:三边成比例的两个三角形相似。

定理4:一条直角边与斜边成比例的两个直角三角形相似。

根据以上判定定理,可以推出下列结论:

推论1:三边对应平行的两个三角形相似。

推论2:一个三角形的两边和三角形任意一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。

推论:

推论一:腰和底对应成比例的两个等腰三角形相似。

推论二:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。

推论三:如果一个三角形的两边和三角形任意一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。

三角形知识点归纳总结篇6

三角形两边:

定理三角形两边的和大于第三边

推论三角形两边的差小于第三边

三角形中位线定理:

三角形的中位线平行于第三边,并且等于它的一半

三角形的重心:

三角形的重心到顶点的距离是它到对边中点距离的2倍。

在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线,三角形的三条中线交于一点,这一点叫做“三角形的重心”。

与三角形有关的角:

1.三角形的内角和定理:三角形的内角和为180°,与三角形的形状无关。

2.直角三角形两个锐角的关系:直角三角形的两个锐角互余(相加为90°)。有两个角互余的三角形是直角三角形。

3.三角形外角的性质:三角形的一个外角等于与它不相邻的两个内角之和;三角形的一个外角大于与它不相邻的任何一个内角;三角形三个外角和为360°。

三角形知识点归纳总结篇7

三角形的分类

按三角形的角分:锐角三角形、直角三角形、钝角三角形

直角三角形的斜边比直角边长

按三角形的边分:等腰三角形(两腰相等,两底角相等)

等边三角形(三边相等;三个角相等,都是60°)

等边三角形也叫正三角形,还是特殊的等腰三角形。

典型题举例如下:一个等腰三角形的两条边分别是8厘米和10厘米,这个三角形的周长是多少厘米?

①当8厘米长的边是底边时

周长:8+10+10=28厘米

②当10厘米长的边是底边时

周长:10+8+8=26厘米

答:这个三角形的周长可能是28厘米,也可能是26厘米。

三角形知识点归纳总结篇8

解直角三角形:

1.概念:由直角三角形中已知的边和角,计算出未知的边和角的过程,叫做解直角三角形。

3.特殊角值

锐角三角形:

sinA=a/c

cosA=b/c

tanA=a/b

cotA=b/a

互余角的三角函数值之间的关系:

若∠A+∠B=90°,那么sinA=cosB或sinB=cosA

同角的三角函数值之间的关系:

①sin²A+cos²A=1

②tanA=sinA/cosA

③tanA=1/tanB

④a/sinA=b/sinB=c/sinC

锐角三角函数随角度的变化规律:

锐角∠A的tan值和sin值随着角度的增大而增大,cos值和cot值随着角度的增大而减小。

符号:sincostancotseccsc

正弦函数sin(A)=a/c

余弦函数cos(A)=b/c

正切函数tan(A)=a/b

余切函数cot(A)=b/a

其中a为对边,b为邻边,c为斜边。

你会喜欢下面的文章?

    四年级绿豆发芽观察日记字(6篇)

    - 阅1

    四年级绿豆发芽观察日记400字听说绿豆泡入水里就可以长出豆芽,我非常好奇。于是,我就在装好水的盆子中泡了一....

    欢乐的元宵节作文(6篇)

    - 阅2

    欢乐的元宵节作文6篇1今年的元宵节过的是比较开心的,因为我前天做了个小手术,所以我不能干活啊,只好看着他们干....