我的自画像四年级作文400字(收集9篇)

来源:

我的自画像四年级作文400字篇1

中考冲刺数学知识点的几个复习建议:

1)所有的知识点自己先复习一遍,标记好那些掌握不扎实的知识,第二轮复习的重点!

2)对于标记不扎实的知识,如果实在不理解,回到课本中查收相应的内容,特别是结合例题理解

3)平常学校一定有很多练习,把做错的题目和难题当成宝贝,因为我们要想进步就这是捷径——理解消化错题,所有保持积极的心态去面对那些错题难题吧。

4)对于学过思维导图的同学,建议将这些知识点按章节梳理成知识体系,平常复习太好用了。

以下是详细的知识点:

一、一元一次方程根的情况

△=b2-4ac

当△>0时,一元二次方程有2个不相等的实数根;

当△=0时,一元二次方程有2个相同的实数根;

当△<0时,一元二次方程没有实数根

2、平行四边形的性质:

①两组对边分别平行的四边形叫做平行四边形。

②平行四边形不相邻的两个顶点连成的线段叫他的对角线。

③平行四边形的对边/对角相等。

④平行四边形的对角线互相平分。

菱形:

①一组邻边相等的平行四边形是菱形

②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。

③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。

矩形与正方形:

①有一个内角是直角的平行四边形叫做矩形。

②矩形的对角线相等,四个角都是直角。

③对角线相等的平行四边形是矩形。

④正方形具有平行四边形,矩形,菱形的一切性质。

⑤一组邻边相等的矩形是正方形。

多边形:

①N边形的内角和等于(N-2)180度

②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)

平均数:对于N个数X1,X2…XN,我们把(X1+X2+…+XN)/N叫做这个N个数的算术平均数,记为X

加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。

二、基本定理

1、过两点有且只有一条直线

2、两点之间线段最短

3、同角或等角的补角相等

4、同角或等角的余角相等

5、过一点有且只有一条直线和已知直线垂直

6、直线外一点与直线上各点连接的所有线段中,垂线段最短

7、平行公理经过直线外一点,有且只有一条直线与这条直线平行

8、如果两条直线都和第三条直线平行,这两条直线也互相平行

9、同位角相等,两直线平行

10、内错角相等,两直线平行

11、同旁内角互补,两直线平行

12、两直线平行,同位角相等

13、两直线平行,内错角相等

14、两直线平行,同旁内角互补

15、定理三角形两边的和大于第三边

16、推论三角形两边的差小于第三边

17、三角形内角和定理三角形三个内角的和等于180°

18、推论1直角三角形的两个锐角互余

19、推论2三角形的一个外角等于和它不相邻的两个内角的和

20、推论3三角形的一个外角大于任何一个和它不相邻的内角

21、全等三角形的对应边、对应角相等

22、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等

23、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等

24、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等

25、边边边公理(SSS)有三边对应相等的两个三角形全等

26、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等

27、定理1在角的平分线上的点到这个角的两边的距离相等

28、定理2到一个角的两边的距离相同的点,在这个角的平分线上

29、角的平分线是到角的两边距离相等的所有点的集合

30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)

31、推论1等腰三角形顶角的平分线平分底边并且垂直于底边

32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33、推论3等边三角形的各角都相等,并且每一个角都等于60°

34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35、推论1三个角都相等的三角形是等边三角形

36、推论2有一个角等于60°的等腰三角形是等边三角形

37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38、直角三角形斜边上的中线等于斜边上的一半

39、定理线段垂直平分线上的点和这条线段两个端点的距离相等

40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42、定理1关于某条直线对称的两个图形是全等形

43、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46、勾股定理直角三角形两直角边a、b的`平方和、等于斜边c的平方,即a2+b2=c2

47、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形

48、定理四边形的内角和等于360°

49、四边形的外角和等于360°

50、多边形内角和定理n边形的内角的和等于(n-2)×180°

51、推论任意多边的外角和等于360°

52、平行四边形性质定理1平行四边形的对角相等

53、平行四边形性质定理2平行四边形的对边相等

54、推论夹在两条平行线间的平行线段相等

55、平行四边形性质定理3平行四边形的对角线互相平分

56、平行四边形判定定理1两组对角分别相等的四边形是平行四边形

57、平行四边形判定定理2两组对边分别相等的四边形是平行四边形

58、平行四边形判定定理3对角线互相平分的四边形是平行四边形

59、平行四边形判定定理4一组对边平行相等的四边形是平行四边形

60、矩形性质定理1矩形的四个角都是直角

61、矩形性质定理2矩形的对角线相等

62、矩形判定定理1有三个角是直角的四边形是矩形

63、矩形判定定理2对角线相等的平行四边形是矩形

64、菱形性质定理1菱形的四条边都相等

65、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角

66、菱形面积=对角线乘积的一半,即S=(a×b)÷2

67、菱形判定定理1四边都相等的四边形是菱形

68、菱形判定定理2对角线互相垂直的平行四边形是菱形

69、正方形性质定理1正方形的四个角都是直角,四条边都相等

70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71、定理1关于中心对称的两个图形是全等的

72、定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

74、等腰梯形性质定理等腰梯形在同一底上的两个角相等

75、等腰梯形的两条对角线相等

76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形

77、对角线相等的梯形是等腰梯形

78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

79、推论1经过梯形一腰的中点与底平行的直线,必平分另一腰

80、推论2经过三角形一边的中点与另一边平行的直线,必平分第三边

81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半

82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h

83、(1)比例的基本性质:

如果a:b=c:d,那么ad=bc

如果ad=bc,那么a:b=c:d

84、(2)合比性质:

如果a/b=c/d,那么(a±b)/b=(c±d)/d

85、(3)等比性质:

如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例

87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

91、相似三角形判定定理1两角对应相等,两三角形相似(ASA)

92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

93、判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)

94、判定定理3三边对应成比例,两三角形相似(SSS)

95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

96、性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

97、性质定理2相似三角形周长的比等于相似比

98、性质定理3相似三角形面积的比等于相似比的平方

99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

101、圆是定点的距离等于定长的点的集合

102、圆的内部可以看作是圆心的距离小于半径的点的集合

103、圆的外部可以看作是圆心的距离大于半径的点的集合

104、同圆或等圆的半径相等

105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线

107、到已知角的两边距离相等的点的轨迹,是这个角的平分线

108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

109、定理不在同一直线上的三点确定一个圆。

110、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧

我的自画像四年级作文400字篇2

动点与函数图象问题常见的四种类型:

1、三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.

2、四边形中的动点问题:动点沿四边形的边运动,判断函数图象.

3、圆中的动点问题:动点沿圆周运动,判断函数图象.

4、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,判断函数图象.

图形运动与函数图象问题常见的三种类型:

1、线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,进行分段,判断函数图象.

2、多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,判断函数图象.

3、多边形与圆的运动图形问题:把一个圆沿一定方向运动经过一个三角形或四边形,或把一个三角形或四边形沿一定方向运动经过一个圆,判断函数图象.

动点问题常见的四种类型:

1、三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系.

2、四边形中的动点问题:动点沿四边形的边运动,通过探究构成的新图形与原图形的全等或相似,得出它们的边或角的关系.

3、圆中的动点问题:动点沿圆周运动,探究构成的新图形的边角等关系.

4、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,探究是否存在动点构成的三角形是等腰三角形或与已知图形相似等问题.

总结反思:

本题是二次函数的`综合题,考查了待定系数法求二次函数的解析式,一次函数的解析式,三角形全等的判定和性质,等腰直角三角形的性质,平行线的性质等,数形结合思想的应用是解题的关键.

解答动态性问题通常是对几何图形运动过程有一个完整、清晰的认识,发掘“动”与“静”的内在联系,寻求变化规律,从变中求不变,从而达到解题目的

解答函数的图象问题一般遵循的步骤:

1、根据自变量的取值范围对函数进行分段.

2、求出每段的解析式.

3、由每段的解析式确定每段图象的形状.

对于用图象描述分段函数的实际问题,要抓住以下几点:

1、自变量变化而函数值不变化的图象用水平线段表示.

2、自变量变化函数值也变化的增减变化情况.

3、函数图象的最低点和最高点.

我的自画像四年级作文400字篇3

动点与函数图象问题常见的四种类型:

1、三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.

2、四边形中的动点问题:动点沿四边形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.

3、圆中的动点问题:动点沿圆周运动,根据问题中的常量与变量之间的关系,判断函数图象.

4、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,根据问题中的常量与变量之间的关系,判断函数图象.

图形运动与函数图象问题常见的'三种类型:

1、线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.

2、多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.

3、多边形与圆的运动图形问题:把一个圆沿一定方向运动经过一个三角形或四边形,或把一个三角形或四边形沿一定方向运动经过一个圆,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.

动点问题常见的四种类型:

1、三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系.

2、四边形中的动点问题:动点沿四边形的边运动,通过探究构成的新图形与原图形的全等或相似,得出它们的边或角的关系.

3、圆中的动点问题:动点沿圆周运动,探究构成的新图形的边角等关系.

4、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,探究是否存在动点构成的三角形是等腰三角形或与已知图形相似等问题.

总结反思:

本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,一次函数的解析式,三角形全等的判定和性质,等腰直角三角形的性质,平行线的性质等,数形结合思想的应用是解题的关键.

解答动态性问题通常是对几何图形运动过程有一个完整、清晰的认识,发掘“动”与“静”的内在联系,寻求变化规律,从变中求不变,从而达到解题目的.

解答函数的图象问题一般遵循的步骤:

1、根据自变量的取值范围对函数进行分段.

2、求出每段的解析式.

3、由每段的解析式确定每段图象的形状.

对于用图象描述分段函数的实际问题,要抓住以下几点:

1、自变量变化而函数值不变化的图象用水平线段表示.

2、自变量变化函数值也变化的增减变化情况.

3、函数图象的最低点和最高点.

我的自画像四年级作文400字篇4

平面直角坐标系

下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

平面直角坐标系:

在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

三个规定:

①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

初中数学知识点:平面直角坐标系的构成

对于平面直角坐标系的构成内容,下面我们一起来学习哦。

平面直角坐标系的构成

在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

初中数学知识点:点的坐标的性质

下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。

点的坐标的性质

建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

一个点在不同的象限或坐标轴上,点的坐标不一样。

希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

初中数学知识点:因式分解的一般步骤

关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。

因式分解的一般步骤

如果多项式有公因式就先提公因式,没有公因式的.多项式就考虑运用公式法;若是四项或四项以上的多项式,

通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

初中数学知识点:因式分解

下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。

因式分解定义

把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

因式分解要素

①结果必须是整式

②结果必须是积的形式

③结果是等式

④因式分解与整式乘法的关系:m(a+b+c)

公因式:

一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

公因式确定方法

①系数是整数时取各项最大公约数。

②相同字母取最低次幂

③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

提取公因式步骤:

①确定公因式。

②确定商式

③公因式与商式写成积的形式。

分解因式注意;

①不准丢字母

②不准丢常数项注意查项数

③双重括号化成单括号

④结果按数单字母单项式多项式顺序排列

⑤相同因式写成幂的形式

⑥首项负号放括号外

⑦括号内同类项合并。

通过上面对因式分解内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。

我的自画像四年级作文400字篇5

首先你要有一个好的态度,有些人学习数学,可能有的阶段会喜欢学习,但是某一阶段,对数学就没有什么兴趣了,可能每个人都会有这样一个阶段,但是如果发现自己不喜欢学习数学了,一定要克制自己,在学习数学上,保持一个良好的学习态度,这是你学好数学的第一步。

充分的利用好上课的时间,上课时间你所掌握的知识,会比你在课下学很长时间都有用,所以珍惜课堂老师所讲的内容,老师的某些话对我们以后做数学题都很有帮助,如果你上课走神,这些话没有听到,你在做题的时候,可能会走很多弯路,做题的'效率也会降低,一旦有这样的情况,可能你就会不喜欢数学了。

学习最重要的是思考,会思考数学才能学好,数学中的题都是需要我们去举一反三的,没做一道题,都要思考一下,围绕着这道题的知识点,还会有什么样的题型出现,哪怕是遇到不会的题,也要勤加的思考,如果你把知识点自认为学习透彻,那么就用做题检验吧,数学中多做题是必须的,成绩都是用题堆积出来的,很少会有人不做题数学成绩很高的。

我的自画像四年级作文400字篇6

20xx年的工作临近尾声,回首本年度真是忙碌而充实,本年度我即担任教导处主任一职又担任班主任工作,经常是忙的喝口水的时间都没有。虽然在教导处主任的岗位上我只有不到一年的工作经验,但是在李校长的关心和培养下,在全体领导、老师、家长的热情支持和帮助下,各项工作得以顺利开展并在一些方面有了较为明显的进步。现对自己一年来所做工作加以梳理和反思,力求在总结中发现不足,在反思中缩中差距,在创新中不断提升。

一、思想品德方面

我热爱教育事业,始初不忘人民教师职责,爱学校、爱学生。作为一名名师,我从自身严格要求自己,通过政治思想、学识水平、教育教学能力等方面的不断提高来塑造自己的行为,使自己在教育行业中不断成长,为社会培养出优秀的人才,打下坚实的基础。

二、主要成绩

今年是我到工作的第五个年头,几年来我一直担任班主任和年级的组长,同时又负责学校教导处工作,一直以来,我始初牢记"踏实工作、真心待人"的原则,在工作中严格要求自己,刻苦钻研业务,不断提高业务水平,不断学习新知识,探索教育教学规律,改进教育教学方法,努力使自己成为专家型教师。

1、在班主任工作方面:我投入了极强的责任心,关注每一名学生,及时发现他们的各种心理或行为动态,还有学习的心态与学习情况,用爱心与耐心浇灌每一个孩子,并且及时与家长、科任老师进行沟通,使孩子在各个方面得到发展,几年来,与学生形成了亦师亦友的和谐师生关系,在18年被评为省级师德先进个人,19年被评为省级优秀教师。加强学习,努力提升自身修为。

2、在教学方面:我严格要求自己,用心备课上课,每一节课都精心准备课件,仔细研究每一道习题,真正做到讲练结合,学以致用,形成了趣实活新的教学风格,同时,在教研方面,我积极去听课评课,认真学习别人上课的长处,为己所用。在17年被评为市级名师工作室主持人,18年被评为省级学科带头人。

3、在教导方面:在做好班主任工作的同时,我作为校长助理、教导主任,我能正确定位,努力做好校长的助手,协调各种工作。

一直以来我总是以饱满的热情对待本职工作,兢兢业业,忠于职守,凡是要求老师们做到的,自己首先做到。我始初认真落实学校制定的教学教研常规,不断规范教师教学行为。从学期初开始,认真执行教学教研工作计划和工作记录,严格按照学校修订的规章制度去要求师生,定期检查教师教案及作业批改情况,发现问题及时反馈及时做好总结并进行跟踪检查,期末对教案进行归纳整理。规范日常巡课制度,定时巡课与不定时巡课相结合,不定时跟班听课,与执教教师共同切磋存在的问题,加强对教学工作的监控,促进教学质量的提高。

学校要发展、要生存必须有一批高素质的教师队伍,同样教师今后要生存要发展必须具有过硬的本领。我清楚的认识到必须加强骨干教师、青年教师的培养力度,也借助各种机遇,为教师搭建自我展示的平台。加大新教师的培养力度,开展“师徒结对子”活动,通过推门听课,领导听课、一课三研、师傅引领课、新教师展示课等,鼓励教师参加各级各类比赛、培训活动等形式,促进新教师的迅速成长。我精心制定了以人为本的校本培训计划,每学期开展十多次骨干培训活动,并进行读书交流活动,活动做到人人有准备,人人有发言,人人有反思,老师们一同感悟,一起分享,在探索和交流中,不断提升教学水准。

通过开展语、数集体备课—上课—听课——评课研讨这样的教研活动观摩,让更多的教师参与到校本教研活动中来,增强了教研活动的实效性,提高了教师的课堂教学水平。新教师展示课活动,“中荷才露尖尖角”,新教师在历练中成长;常态化的研讨课,“万紫千红总是春”,老师们取长补短,共同促进;名师、骨干教师的精品课,“万绿丛中一点红”,起了引领示范的作用。

教科研是教学的源泉,是教改的先导,我十分重视课题研究、管理。18年独立承担了省级重点课题研究已经结题,并被评为科研课题先进个人,19年又独立承担了中课题的研究,已经接近尾声。

4、自身提高方面:我能利用课余时间阅读一些教育名著及教育教学刊物,并及时做好读书笔记,建立个人博客,发表自己原创的教学感想、教案设计、学习心得、教育理念等文章。一份耕耘,一份收获”,一年来,我积极参加各级各类比赛,多次获奖,还被评为县级学科带头人。

三、存在的不足

回顾一年来的工作,我虽然取得了一些成绩,积累了一些经验,但是,实事求是地说,与领导的要求和自己的期待还有差距,主要表现在:

1、对教导处管理工作还须脚踏实地地去做,谦虚认真地去学,以使自己取得更好的成绩。

2、教学方面对差生主要是采取开中灶、严要求的方式进行强化管理,对其心理攻坚尚不到位,所以见效慢,容易激化师生间的矛盾,还得在实践中多摸索。课堂教学水平有待提高,要与同事们多切磋,多学习。

3、教研方面,仍需强化、深化、细化地系统学习相关理论知识,所写随感不能仅仅停留在表面现象,还应善于总结提升,以形成有一定深度的`,并具有自我指导意义的理论型文字。

另外,意志仍不够坚强,坚持还不够彻底,实是欠缺“铁杵磨成针”的精神。总之,回顾取得的成绩,固然可喜,值得欣慰,但面对未来,仍感任重道远、不敢懈怠。

最后,用一句话作为本年度的工作总结,下一年度的开始,也就是:既然选择了远方,必然风雨兼程。我将某某,继续前行!

关于数学常见误区有哪些

1、被动学习

许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权.表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”,没有真正理解所学内容。

2、学不得法

老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背。也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。

3、不重视基础

一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海。到正规作业或考试中不是演算出错就是中途“卡壳”。

4、进一步学习条件不具备

高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃.这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高。

如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等。客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的。

我的自画像四年级作文400字篇7

一、平移变换:

1、概念:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。

2、性质:

(1)平移前后图形全等;

(2)对应点连线平行或在同一直线上且相等。

3、平移的作图步骤和方法:

(1)分清题目要求,确定平移的方向和平移的距离。

(2)分析所作的图形,找出构成图形的关健点。

(3)沿一定的方向,按一定的距离平移各个关健点。

(4)连接所作的各个关键点,并标上相应的字母。

(5)写出结论。

二、旋转变换:

1、概念:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。

说明:

(1)图形的旋转是由旋转中心和旋转的角度所决定的;

(2)旋转过程中旋转中心始终保持不动。

(3)旋转过程中旋转的方向是相同的。

(4)旋转过程静止时,图形上一个点的'旋转角度是一样的。⑤旋转不改变图形的大小和形状。

2、性质:

(1)对应点到旋转中心的距离相等;

(2)对应点与旋转中心所连线段的夹角等于旋转角;

(3)旋转前、后的图形全等。

3、旋转作图的步骤和方法:

(1)确定旋转中心及旋转方向、旋转角;

(2)找出图形的关键点;

(3)将图形的关键点和旋转中心连接起来,然后按旋转方向分别将它们旋转一个旋转角度数,得到这些关键点的对应点;

(4)按原图形顺次连接这些对应点,所得到的图形就是旋转后的图形。

说明:在旋转作图时,一对对应点与旋转中心的夹角即为旋转角。

4、常见考法

(1)把平移旋转结合起来证明三角形全等;

(2)利用平移变换与旋转变换的性质,设计一些题目。

误区提醒

(1)弄反了坐标平移的上加下减,左减右加的规律;

(2)平移与旋转的性质没有掌握。

我的自画像四年级作文400字篇8

三角形的知识点

1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2、三角形的分类

3、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

4、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

5、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

6、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

7、高线、中线、角平分线的意义和做法

8、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

9、三角形内角和定理:三角形三个内角的和等于180°

推论1直角三角形的两个锐角互余

推论2三角形的一个外角等于和它不相邻的两个内角和

推论3三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半

10、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

11、三角形外角的性质

(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;

(2)三角形的一个外角等于与它不相邻的两个内角和;

(3)三角形的一个外角大于与它不相邻的任一内角;

(4)三角形的外角和是360°。

四边形(含多边形)知识点、概念总结

一、平行四边形的定义、性质及判定

1、两组对边平行的四边形是平行四边形。

2、性质:

(1)平行四边形的对边相等且平行

(2)平行四边形的对角相等,邻角互补

(3)平行四边形的对角线互相平分

3、判定:

(1)两组对边分别平行的四边形是平行四边形

(2)两组对边分别相等的四边形是平行四边形

(3)一组对边平行且相等的'四边形是平行四边形

(4)两组对角分别相等的四边形是平行四边形

(5)对角线互相平分的四边形是平行四边形

4、对称性:平行四边形是中心对称图形

二、矩形的定义、性质及判定

1、定义:有一个角是直角的平行四边形叫做矩形

2、性质:矩形的四个角都是直角,矩形的对角线相等

3、判定:

(1)有一个角是直角的平行四边形叫做矩形

(2)有三个角是直角的四边形是矩形

(3)两条对角线相等的平行四边形是矩形

4、对称性:矩形是轴对称图形也是中心对称图形。

三、菱形的定义、性质及判定

1、定义:有一组邻边相等的平行四边形叫做菱形

(1)菱形的四条边都相等

(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角

(3)菱形被两条对角线分成四个全等的直角三角形

(4)菱形的面积等于两条对角线长的积的一半

2、s菱=争6(n、6分别为对角线长)

3、判定:

(1)有一组邻边相等的平行四边形叫做菱形

(2)四条边都相等的四边形是菱形

(3)对角线互相垂直的平行四边形是菱形

4、对称性:菱形是轴对称图形也是中心对称图形

四、正方形定义、性质及判定

1、定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形

2、性质:

(1)正方形四个角都是直角,四条边都相等

(2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

(3)正方形的一条对角线把正方形分成两个全等的等腰直角三角形

(4)正方形的对角线与边的夹角是45°

(5)正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形

3、判定:

(1)先判定一个四边形是矩形,再判定出有一组邻边相等

(2)先判定一个四边形是菱形,再判定出有一个角是直角

4、对称性:正方形是轴对称图形也是中心对称图形

五、梯形的定义、等腰梯形的性质及判定

1、定义:一组对边平行,另一组对边不平行的四边形是梯形。两腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形

2、等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等

3、等腰梯形的判定:两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰梯形;两条对角线相等的梯形是等腰梯形

4、对称性:等腰梯形是轴对称图形

六、三角形的中位线平行于三角形的第三边并等于第三边的一半;梯形的中位线平行于梯形的两底并等于两底和的一半。

七、线段的重心是线段的中点;平行四边形的重心是两对角线的交点;三角形的重心是三条中线的交点。

八、依次连接任意一个四边形各边中点所得的四边形叫中点四边形。

九、多边形

1、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

2、多边形的内角:多边形相邻两边组成的角叫做它的内角。

3、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

4、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

5、多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。

6、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。

7、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

8、公式与性质

多边形内角和公式:n边形的内角和等于(n-2)·180°

9、多边形外角和定理:

(1)n边形外角和等于n·180°-(n-2)·180°=360°

(2)边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°

10、多边形对角线的条数:

(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形

(2)n边形共有n(n-3)/2条对角线

圆知识点、概念总结

1、不在同一直线上的三点确定一个圆。

2、垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧

推论1①(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

推论2圆的两条平行弦所夹的弧相等

3、圆是以圆心为对称中心的中心对称图形

4、圆是定点的距离等于定长的点的集合

5、圆的内部可以看作是圆心的距离小于半径的点的集合

6、圆的外部可以看作是圆心的距离大于半径的点的集合

7、同圆或等圆的半径相等

8、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

9、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

10、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

11、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

12、①直线L和⊙O相交d

②直线L和⊙O相切d=r

③直线L和⊙O相离d>r

13、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线

14、切线的性质定理:圆的切线垂直于经过切点的半径

15、推论1经过圆心且垂直于切线的直线必经过切点

16、推论2经过切点且垂直于切线的直线必经过圆心

17、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

18、圆的外切四边形的两组对边的和相等,外角等于内对角

19、如果两个圆相切,那么切点一定在连心线上

20、①两圆外离d>R+r

②两圆外切d=R+r

③两圆相交R-rr)

④两圆内切d=R-r(R>r)⑤两圆内含dr)

21、定理:相交两圆的连心线垂直平分两圆的公共弦

22、定理:把圆分成n(n≥3):

(1)依次连结各分点所得的多边形是这个圆的内接正n边形

(2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

23、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

24、正n边形的每个内角都等于(n-2)×180°/n

25、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

26、正n边形的面积Sn=pnrn/2p表示正n边形的周长

27、正三角形面积√3a/4a表示边长

28、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

29、弧长计算公式:L=n兀R/180

30、扇形面积公式:S扇形=n兀R^2/360=LR/2

31、内公切线长=d-(R-r)外公切线长=d-(R+r)

32、定理:一条弧所对的圆周角等于它所对的圆心角的一半

33、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

34、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

35、弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r

我的自画像四年级作文400字篇9

一元一次方程定义

通过化简,只含有一个未知数,且含有未知数的最高次项的次数是一的等式,叫一元一次方程。通常形式是ax+b=0(a,b为常数,且a≠0)。一元一次方程属于整式方程,即方程两边都是整式。

一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式。这里a是未知数的系数,b是常数,x的次数必须是1。

即一元一次方程必须同时满足4个条件:⑴它是等式;⑵分母中不含有未知数;⑶未知数最高次项为1;⑷含未知数的项的系数不为0。

一元一次方程的五个核心问题

一、什么是等式?1+1=1是等式吗?

表示相等关系的式子叫做等式,等式可分三类:第一类是恒等式,就是用任何允许的数值代替等式中的.字母,等式的两边总是相等,由数字组成的等式也是恒等式,如2+4=6,a+b=b+a等都是恒等式;第二类是条件等式,也就是方程,这类等式只能取某些数值代替等式中的字母时,等式才成立,如x+y=-5,x+4=7等都是条件等式;第三类是矛盾等式,就是无论用任何值代替等式中的字母,等式总不成立,如x2=-2,|a|+5=0等。

一个等式中,如果等号多于一个,叫做连等式,连等式可以化为一组只含有一个等号的等式。

等式与代数式不同,等式中含有等号,代数式中不含等号。

等式有两个重要性质1)等式的两边都加上或减去同一个数或同一个整式,所得结果仍然是一个等式;(2)等式的两边都乘以或除以同一个数除数不为零,所得结果仍然是一个等式。

二、什么是方程,什么是一元一次方程?

含有未知数的等式叫做方程,如2x-3=8,x+y=7等。判断一个式子是否是方程,只需看两点:一是不是等式;二是否含有未知数,两者缺一不可。

只含有一个未知数,并且含未知数的式子都是整式,未知数的次数是1,系数不是0的方程叫做一元一次方程。其标准形式是ax+b=0(a不为0,a,b是已知数),值得注意的是1)一个整式方程的"元"和"次"是将这个方程化成最简形式后才能判定的。如方程2y2+6=3x+2y2,形式上是二元二次方程,但化简后,它实际上是一个一元一次方程。(2)整式方程分母中不含有未知数。判断是否为整式方程,是不能先将它化简的如方程x+1/x=2+1/x,因为它的分母中含有未知数x,所以,它不是整式方程。如果将上面的方程进行化简,则为x=2,这时再去作判断,将得到错误的结论。

凡是谈到次数的方程,都是指整式方程,即方程的两边都是整式。一元一次方程是整式方程中元数最少且次数最低的方程。

三、等式有什么牛掰的基本性质吗?

将方程中的某些项改变符号后,从方程的一边移到另一边的变形叫做移项,移项的依据是等式的基本性质1。

移项时不一定要把含未知数的项移到等式的左边。如解方程3x-2=4x-5时就可以把含未知数的项移到右边,而把常数项移到左边,这样会显得简便些。

去分母,将未知数的系数化为1,则是依据等式的基本性质2进行的。

四、等式一定是方程吗?方程一定是等式吗?

等式与方程有很多相同之处。如都是用等号连接的,等号左、右两边都是代数式,但它们还是有区别的。方程仅是含有未知数的等式,是等式中的特例。就是说,等式包含方程;反过来,方程并不包含所有的等式。如,13+5=18,18-13=5都属于等式,但它们并不是方程。因此,等式一定是方程的说法是不对的。

五、"解方程"与"方程的解"是一回事儿吗?

方程的解是使方程左、右两边相等的未知数的取值。而解方程是求方程的解或判断方程无解的过程。即方程的解是结果,而解方程是一个过程。方程的解中的"解"是名词,而解方程中的"解"是动词,二者不能混淆。

你会喜欢下面的文章?

    四年级绿豆发芽观察日记字(6篇)

    - 阅8

    四年级绿豆发芽观察日记400字听说绿豆泡入水里就可以长出豆芽,我非常好奇。于是,我就在装好水的盆子中泡了一....

    欢乐的元宵节作文(6篇)

    - 阅6

    欢乐的元宵节作文6篇1今年的元宵节过的是比较开心的,因为我前天做了个小手术,所以我不能干活啊,只好看着他们干....