常见的逻辑推理方式(6篇)

来源:

常见的逻辑推理方式篇1

论文摘要:逻辑学是研究推理的一门学问,而推理是由概念、命题组成的,不懂得命题就不懂得推理。普通逻辑学在研究命题时,主要是从二值逻辑的角度研究命题逻辑形式的逻辑值与命题形式之间的真假关系。本文着重从认识论的角度阐述逻辑真理的内涵,同时详细论述逻辑真理与事实真理的区别。为了探求真理必须保证思维的逻辑性。

逻辑学离不开“真”这个概念。一般来说人们是从下述意义上使用“真”这个概念的:

(一)前提或者命题真。这种真是指命题的思想内容是真的。任何一个命题的内容不是真的就是假的,在这里真或假不是用以描述事物状态的,而是评价命题或陈述的内容的。它的核心是针对其所表达的知识或信念的,例如:“台湾不是一个国家。”这个命题的内容是符合客观事实的,所以是个真命题。

(二)推理真。这是指推理中前提真和结论真之间的关系。演绎推理前提真结论必然真,归纳推理和类比推理前提真而结论是或然性真。因此推理真就是推理中的结论相对于前提是必然的真或者是或然的真。这里“真”指的是否再现逻辑推断关系而不是对命题内容的评价。

(三)指派真和赋值真。在逻辑学中(特别是在现代逻辑中)把命题形式当作真值形式,而且只从真假的角度研究每一种命题形式的逻辑特征,真和假是命题的唯一属性。逻辑真在这里指这些真值形式和其中的变项与公式的真假,这时的真假和具体命题内容的真假无关,而只是一种假定的真假和根据这种假定而推论出的真假。

(四)形式真。这是指永真式(重言式)或普遍有效式的真。逻辑学中有一类公式,对其中的变项可以代以任何命题、谓词、个体词总能得到真命题。这类公式的真是一种逻辑关系的真,例如:P或者非P中不管变项P赋真值或是假值,这个公式都是真的。

(五)系统真。现代逻辑建立了形式系统,如果它的定理都是形式真,即都是永真公式或是普遍有效式,那么整个系统便是可靠的和一致的,这种可靠性和一致性就是一种系统的真。

在以上这五种“真”的情况下,逻辑学不考虑第一种意义的“真”,而只关注后四种“真”。后四种“真”在逻辑学中有各种表现,在其他科学中也有这些意义上的真的表现,就被称为逻辑真理。

所谓逻辑真理是一种特殊的真理,是一种因逻辑关系或逻辑原因而成为真的一种真理。逻辑真理不能凭经验而得知其为真,它需要我们借助逻辑分析、语义分析、关系分析确定它们是真的。它和我们日常生活中所说的真理是有区别的。

恩格斯认为:全部哲学特别是近代哲学的重大基本问题,是思维与存在的关系问题。它包括两个方面的问题,一方面是思维与存在何者为本原的问题;另一方面是思维和存在有无同一性的问题,也就是我们的思维能否认识现实或者正确地反映现实世界的问题。从逻辑哲学的角度来看,其重大的基本问题就是逻辑与客观现实的关系问题,任何逻辑学家都要回答:逻辑真理是否与客观现实一致?逻辑真理与事实真理之间又有什么关系?

关于这个理论问题,亚里士多德在其所著《形而上学》一书中明确提出并详细论述了逻辑基本规律(矛盾律与排中律)。在谈到矛盾律时认为,事物不能同时存在又不存在。矛盾律首先是存在的规律。它之所以能够成为逻辑思维的基本规律,是因为它符合“事理”。亚里士多德肯定了逻辑规律与存在规律的一致性,其根据就是真理符合现实的理论,即所谓真理符合论。它在解释真与假这对概念时说,凡以不是为是、是为不是者,这就是假的;凡以实为实、以假为假者这就是真的。按照真理符合论,一切真理必需与现实一致,逻辑真理也不能例外。可见亚里士多德的真理观,是唯物主义的一元论,这个真理论肯定了思维与存在的同一性。但是亚里士多德只强调逻辑真理与存在规律的一致性,却忽视了逻辑真理的特殊性。莱布尼兹是现代逻辑的创始人。他第一个提出了用数学方法研究逻辑学中的推理问题,对亚里士多德的真理一元论提出了挑战。他认为有两种真理:即推理的真理和事实的真理。推理的真理是必然的,事实的真理是偶然的。推理的真理不像事实真理那样依赖于经验,它们的证明只能来自所谓的天赋的内在原则。因此莱布尼兹的这种观点,就成为真理二元论和逻辑真理先验论的一个起源。

基于莱布尼兹的推理真理和事实真理的对立,在康德的哲学中就演变为分析判断和综合判断的分歧。康德认为一切来源于经验的判断都是综合判断;分析判断是绝对独立于一切经验的知识,即先天知识。例如:“白人是人”就是分析判断,在康德看来表示逻辑规律的判断就属于分析判断。

数理逻辑问世之后,逻辑哲学领域中出现了维特根斯坦学派,即以维也纳小组为核心的逻辑实证主义者。他们的一个共同的工作就是利用数理逻辑的成果,发展从莱布尼兹到康德的真理二元论和逻辑真理的先验论,使之获得科学化的外观和现代化的形式。维特根斯坦把逻辑真理称为重言式。他认为重言式的命题是无条件的真,由此他断言,重言式既不能为经验所证实,同样的也不能为经验所否定,也就是说与现实没有任何描述关系。逻辑实证主义者进一步把康德关于分析判断和综合判断的区分推向极端。在他们看来,凡是先天的都是分析的;反之,凡分析的都是先天的。逻辑实证主义者确立了一个基本的哲学信条:分析真理与综合真理有根本的区别。这个学派的主要代表卡尔纳普认为,哲学家们常常区分两类真理,某些陈述的真理是逻辑的、必然的、根据意义而定的,另一些陈述的真理是经验的、偶然的、取决于世界上的事实的。前一类推理就是所谓的分析推理,后一类推理就是所谓的综合推理。逻辑真理被看作是分析真理的一个特殊的真子集。

1933年塔尔斯基以形式化的方法给出了真理的语义学概念,他用非形式化方法对其语义学的成果作出概述。他认为逻辑真理同其他真理一样,必需与客观现实相符合或者相一致,在形式语言中,一个语句是不是逻辑真理,取决于它是不是在每一种解释下都成为真语句;同时一个语句在某一解释下是否为真,取决于它在这一解释下,是否与它所“谈论的对象”相一致。可见逻辑真理的概念直接依赖于形式语言中的语句,与它们所描述的客观现实之间的符合关系,这说明它的逻辑真理或者分析真理并非先验的真或者先天的真,它们为真同样是因为它们与现实相符合。塔尔斯基重新建立了真理符合论,表明一切真理包括事实真理和逻辑真理,它们的共同特征就是必需与客观现实相符合。

综上所述,我们可以看出亚里士多德提出的真理符合论,肯定了逻辑真理与存在规律的一致性,但是忽视了它们之间的差别。莱布尼兹、康德、维特根斯坦和逻辑实证主义者认为,逻辑真理和现实绝对无关,与事实真理根本不同。塔尔斯基主张真理必需以亚里士多德的真理符合论为基础,而且只能以形式语言来构造,这种观点有一定的局限性。

马克思主义认识论认为,真理是客观事物及其规律在人们思维中的正确反映。同样逻辑真理也是客观世界规律性的反映。列宁指出,人的实践经过千百万次的重复,它在人的意识中以逻辑的格固定下来,而最普遍的逻辑格,就是事物被描述的很幼稚的……最普遍的关系。列宁认为逻辑的公理、正确的推理形式是事物最普遍的关系,是由人们实践中千百万次的重复而反映和巩固在意识中。列宁说的最普遍的逻辑格是指三段论推理的正确形式。在这一点上我们说逻辑真和事实真是相容的,事实真是基础,逻辑真是建立在事实真基础之上的,二者是一致的,但是逻辑真理与任何具体的经验事实无关。

常见的逻辑推理方式篇2

关键词:逻辑真理;真理符合论

中图分类号:B81文献标识码:A

逻辑学离不开“真”这个概念。一般来说人们是从下述意义上使用“真”这个概念的:

(一)前提或者命题真。这种真是指命题的思想内容是真的。任何一个命题的内容不是真的就是假的,在这里真或假不是用以描述事物状态的,而是评价命题或陈述的内容的。它的核心是针对其所表达的知识或信念的,例如:“台湾不是一个国家。”这个命题的内容是符合客观事实的,所以是个真命题。

(二)推理真。这是指推理中前提真和结论真之间的关系。演绎推理前提真结论必然真,归纳推理和类比推理前提真而结论是或然性真。因此推理真就是推理中的结论相对于前提是必然的真或者是或然的真。这里“真”指的是否再现逻辑推断关系而不是对命题内容的评价。

(三)指派真和赋值真。在逻辑学中(特别是在现代逻辑中)把命题形式当作真值形式,而且只从真假的角度研究每一种命题形式的逻辑特征,真和假是命题的唯一属性。逻辑真在这里指这些真值形式和其中的变项与公式的真假,这时的真假和具体命题内容的真假无关,而只是一种假定的真假和根据这种假定而推论出的真假。

(四)形式真。这是指永真式(重言式)或普遍有效式的真。逻辑学中有一类公式,对其中的变项可以代以任何命题、谓词、个体词总能得到真命题。这类公式的真是一种逻辑关系的真,例如:P或者非P中不管变项P赋真值或是假值,这个公式都是真的。

(五)系统真。现代逻辑建立了形式系统,如果它的定理都是形式真,即都是永真公式或是普遍有效式,那么整个系统便是可靠的和一致的,这种可靠性和一致性就是一种系统的真。

在以上这五种“真”的情况下,逻辑学不考虑第一种意义的“真”,而只关注后四种“真”。后四种“真”在逻辑学中有各种表现,在其他科学中也有这些意义上的真的表现,就被称为逻辑真理。

所谓逻辑真理是一种特殊的真理,是一种因逻辑关系或逻辑原因而成为真的一种真理。逻辑真理不能凭经验而得知其为真,它需要我们借助逻辑分析、语义分析、关系分析确定它们是真的。它和我们日常生活中所说的真理是有区别的。

恩格斯认为:全部哲学特别是近代哲学的重大基本问题,是思维与存在的关系问题。它包括两个方面的问题,一方面是思维与存在何者为本原的问题;另一方面是思维和存在有无同一性的问题,也就是我们的思维能否认识现实或者正确地反映现实世界的问题。从逻辑哲学的角度来看,其重大的基本问题就是逻辑与客观现实的关系问题,任何逻辑学家都要回答:逻辑真理是否与客观现实一致?逻辑真理与事实真理之间又有什么关系?

关于这个理论问题,亚里士多德在其所著《形而上学》一书中明确提出并详细论述了逻辑基本规律(矛盾律与排中律)。在谈到矛盾律时认为,事物不能同时存在又不存在。矛盾律首先是存在的规律。它之所以能够成为逻辑思维的基本规律,是因为它符合“事理”。亚里士多德肯定了逻辑规律与存在规律的一致性,其根据就是真理符合现实的理论,即所谓真理符合论。它在解释真与假这对概念时说,凡以不是为是、是为不是者,这就是假的;凡以实为实、以假为假者这就是真的。按照真理符合论,一切真理必需与现实一致,逻辑真理也不能例外。可见亚里士多德的真理观,是唯物主义的一元论,这个真理论肯定了思维与存在的同一性。但是亚里士多德只强调逻辑真理与存在规律的一致性,却忽视了逻辑真理的特殊性。

莱布尼兹是现代逻辑的创始人。他第一个提出了用数学方法研究逻辑学中的推理问题,对亚里士多德的真理一元论提出了挑战。他认为有两种真理:即推理的真理和事实的真理。推理的真理是必然的,事实的真理是偶然的。推理的真理不像事实真理那样依赖于经验,它们的证明只能来自所谓的天赋的内在原则。因此莱布尼兹的这种观点,就成为真理二元论和逻辑真理先验论的一个起源。

基于莱布尼兹的推理真理和事实真理的对立,在康德的哲学中就演变为分析判断和综合判断的分歧。康德认为一切来源于经验的判断都是综合判断;分析判断是绝对独立于一切经验的知识,即先天知识。例如:“白人是人”就是分析判断,在康德看来表示逻辑规律的判断就属于分析判断。

数理逻辑问世之后,逻辑哲学领域中出现了维特根斯坦学派,即以维也纳小组为核心的逻辑实证主义者。他们的一个共同的工作就是利用数理逻辑的成果,发展从莱布尼兹到康德的真理二元论和逻辑真理的先验论,使之获得科学化的外观和现代化的形式。维特根斯坦把逻辑真理称为重言式。他认为重言式的命题是无条件的真,由此他断言,重言式既不能为经验所证实,同样的也不能为经验所否定,也就是说与现实没有任何描述关系。逻辑实证主义者进一步把康德关于分析判断和综合判断的区分推向极端。在他们看来,凡是先天的都是分析的;反之,凡分析的都是先天的。逻辑实证主义者确立了一个基本的哲学信条:分析真理与综合真理有根本的区别。这个学派的主要代表卡尔纳普认为,哲学家们常常区分两类真理,某些陈述的真理是逻辑的、必然的、根据意义而定的,另一些陈述的真理是经验的、偶然的、取决于世界上的事实的。前一类推理就是所谓的分析推理,后一类推理就是所谓的综合推理。逻辑真理被看作是分析真理的一个特殊的真子集。

1933年塔尔斯基以形式化的方法给出了真理的语义学概念,他用非形式化方法对其语义学的成果作出概述。他认为逻辑真理同其他真理一样,必需与客观现实相符合或者相一致,在形式语言中,一个语句是不是逻辑真理,取决于它是不是在每一种解释下都成为真语句;同时一个语句在某一解释下是否为真,取决于它在这一解释下,是否与它所“谈论的对象”相一致。可见逻辑真理的概念直接依赖于形式语言中的语句,与它们所描述的客观现实之间的符合关系,这说明它的逻辑真理或者分析真理并非先验的真或者先天的真,它们为真同样是因为它们与现实相符合。塔尔斯基重新建立了真理符合论,表明一切真理包括事实真理和逻辑真理,它们的共同特征就是必需与客观现实相符合。

综上所述,我们可以看出亚里士多德提出的真理符合论,肯定了逻辑真理与存在规律的一致性,但是忽视了它们之间的差别。莱布尼兹、康德、维特根斯坦和逻辑实证主义者认为,逻辑真理和现实绝对无关,与事实真理根本不同。塔尔斯基主张真理必需以亚里士多德的真理符合论为基础,而且只能以形式语言来构造,这种观点有一定的局限性。

马克思主义认识论认为,真理是客观事物及其规律在人们思维中的正确反映。同样逻辑真理也是客观世界规律性的反映。列宁指出,人的实践经过千百万次的重复,它在人的意识中以逻辑的格固定下来,而最普遍的逻辑格,就是事物被描述的很幼稚的……最普遍的关系。列宁认为逻辑的公理、正确的推理形式是事物最普遍的关系,是由人们实践中千百万次的重复而反映和巩固在意识中。列宁说的最普遍的逻辑格是指三段论推理的正确形式。在这一点上我们说逻辑真和事实真是相容的,事实真是基础,逻辑真是建立在事实真基础之上的,二者是一致的,但是逻辑真理与任何具体的经验事实无关。

第一,逻辑系统的公理和定理的真是逻辑系统设定,其为真的根据是某种初始的逻辑关系。第二,逻辑公理和定理经过解释的真命题,其为真不取决于解释中的内容,而取决于这些公理、定理所显示的逻辑关系。第三,逻辑推断关系这种推论的结论真是一种逻辑关系真。第四,根据逻辑联系词的性质,由逻辑真得到逻辑真。如:A、B是逻辑真命题,那么A并且B、如果A那么B都是逻辑真命题。第五,数学中的逻辑真命题,是建立在公理演绎基础之上。以上这些逻辑真由于逻辑的原因或者逻辑关系而真,在这一点上我们可以说,在局部意义上,相对于特定的逻辑系统而言,逻辑真理可以说是分析的,是以逻辑意义为根据的,而与任何具体的经验事实无关。

常见的逻辑推理方式篇3

关键词:素质培养;逻辑学;教育;应用

一、学习逻辑学的意义和作用

作为一门学科,逻辑学有广义与狭义两种理解。广义的逻辑学泛指研究思维形式、思维方法、思维规律的科学;狭义的逻辑学仅指形式逻辑,形式逻辑又可分为传统的形式逻辑和现代形式逻辑。

学习逻辑学可以帮助人们认识真理,人们的真理性认识归根结底是从社会实践中来的,正如“实践是检验真理的唯一标准”。认识真理有两条基本途径:

(1)从实践中获得感性认识并运用科学的思维方法对感性材料进行加工分析,实现感性认识向理性认识的飞跃,从而把握事物的本质和规律。要实现从感性认识向理性认识的本质转变,应当掌握丰富的、切合实际的感性材料,同时还要有分析这些材料的能力,即能够运用科学的逻辑思维方法,从感性材料中准确地提炼概念,作出判断,得到正确推理。

(2)根据已经被实践检验过的真理性认识,通过正确地推理,推出新的真理性认识。能否推出真实的结论,需要具备两个条件:①前提条件是真实的;②推理形式正确(即符合逻辑学的推理要求)。学习和掌握逻辑学中的概念、判断、推理,有助于人们在感性认识的基础上获得理性认识,也有助于人们根据已有的真理性认识推出新的真理性认识。

逻辑学的意义、作用和目的可概括为以下几点:

(1)通过学习逻辑,掌握逻辑学的专门技术和方法,应用这些技术和方法,可以帮助我们解决一些实际问题;

(2)通过学习逻辑,培养人们的逻辑思维意识,使这种逻辑思维意识成为我们知识结构中的重要组成部分,在我们的学习、工作和生活中起到潜移默化的作用;

(3)通过学习逻辑知识形成一种逻辑观念。

上述三者中,最为重要的是树立逻辑观念,任何形式的学习都是为了树立某种观念,具备相应的素质,从而为我们的工作和生活提供指导。若能达到这三个方面,说明逻辑学已经成为你素质的重要组成部分,成为你发现问题、处理问题、思考问题、分析问题的一种能力。大学教育除了培养学生的专业技能外,更为重要的是培养学生思考、分析、解决问题的能力,这也是国民素质强的一种表现。

二、逻辑学与素质教育

人的素质分为先天素质和后天素质,先天素质是人生来就有的素质,包括人的感觉器官、运动器官、神经系统、大脑的结构和机能等。先天素质是人们认识形成和发展的自然前提。后天素质是通过培养和锻炼而形成的素质,思想道德素质和科学文化素质就是后天素质。人的素质不仅表现在知识面非常广,更为重要的是对问题的处理能力及对问题的认识、思考、分析和判断等,用一个词来概括就是“能力”。因此,素质教育不仅仅是掌握几门知识、技术,更为深刻的是有没有处理问题的能力。因此,可以说逻辑学与素质教育应该是最为密切的。在实际生活中,最早培养逻辑思维能力的是语言,我们从学说话起就进行这种逻辑思维能力的培养。相对于数学,这种思维能力更为抽象,只是对于我们来说,日常应用,司空见惯而不讨论其本质。在实践中我们知道,数学学得好的,逻辑学也容易学得好,相反,则不容易。这是因为数学与逻辑学之间有联系,数学教学中,有一项教学任务就是训练学生的逻辑思维能力和抽象思维能力,正因如此,我们在逻辑学的教学中应按照不同的专业有不同的要求,使学生的素质得到均衡发展。

逻辑学与数学相比较,它更抽象,这点与大家的认识可能有误差,下面我们对比分析一下:(1)数学用数学语言(字母、符号等)表示,逻辑学用逻辑符号来表示,逻辑符号有具体含义,所以,逻辑学抽象的难度是既要理解符号的含义,理解符号之间的运算关系,还要理解运算规则所包含的意义。(2)日常生活中,我们使用的是文字符号,不是数学符号,因此,逻辑学与我们的日常生活联系更为紧密。所以,学生在进入大学后开始接触逻辑学就不感到陌生,基于这一点,我们的逻辑学是以语言为主、传统逻辑为主要内容的教学。

狭义的逻辑学分为传统的形式逻辑和现代形式逻辑。传统形式逻辑是现在高等专科学校逻辑学教学的主要内容,同时也是培养学生逻辑思维能力的基础学科的主要内容。随着科学技术的进一步发展,现代形式逻辑所具有的基础性、应用性和培养能力远远超过传统形式逻辑。现代逻辑是对传统逻辑的继承与发扬,现代逻辑不仅可以作为日常生活中的思维工具(具有传统逻辑的作用),还可以解决传统逻辑所不能解决的问题。现代科学技术的发展和高等教育的发展,对人的思维能力的培养也提出了更高的水平,这已超出传统逻辑所能提供的要求。

因此,逻辑学与素质教育的关系不能停留在对传统形式逻辑的要求上,应当是两者共同发展的要求。现代形式逻辑的意义、性质和作用可以作为适应现代科学发展需要的素质要求,成为素质教育中的核心课程。这样才能更好地发挥逻辑学作为一门基础学科的意义和作用,体现逻辑学对素质培养的地位。

三、逻辑学与素质教育的展望

教育是民族振兴和社会进步的基石,十报告把教育放在改善民生和加强社会建设之前,全面提高全民受教育程度和创新人才培养水平,就能为基本实现教育现代化,进入人力资源强国行列作出贡献。建设创新型国家的战略任务,永远自立于世界先进民族之林的愿望,迫切要求我们加强素质教育,而逻辑思维能力的训练则构成素质教育的重要组成部分。逻辑学早已被联合国教科文组织列为基础学科之一,作为重要的基础学科,我们大家应高度重视逻辑思维能力训练,推动和加快素质教育的全面落实。

参考文献:

[1]陈波.逻辑哲学引论[M].人民出版社,1990:289.

[2]奎因.从逻辑的观点看[M].江天骥,译.上海译文出版社,1987:1-31.

[3]陈学明.德里达对马克思主义现实性的论证[J].马克思主义与现实,2000.

[4]沈剑英.因明学简论[A].全国逻辑学讨论会论文选[C],1979.

常见的逻辑推理方式篇4

―、防治“逻辑恐惧症”

由教育部组织编写、高等教育出版社出版的面向21世纪课程教材——《逻辑学教程》,成为目前权威性、方向性的逻辑教材。它反映我国逻辑学界改革传统逻辑,使逻辑学迅速走上“现代化”的强烈愿望。教材中大量引进了符号逻辑内容,形成了高度抽象化的符号体系画面,但由此逻辑学在大学生,尤其是文科大学生眼里就变得越发艰深,难以接受。冗长的符号公式、纯理论的机械演算,使他们在心理上对逻辑学产生了距离感、畏惧感,由此酿成了“逻辑恐惧症”。学生们认为逻辑学高深莫测,太抽象,太难学。进而产生“逻辑学有什么用”的疑问,觉得逻辑理论与现实缺少联系,对逻辑学的功用感到茫然。因此,大大削弱了学生学习逻辑的兴趣与信心:“逻辑恐惧症”造成了逻辑学习者的心理屏障,严重影响着逻辑学的普及与应用,所以必须防治“逻辑恐惧症”:如何防治“逻辑恐惧症”?主要是使逻辑学贴近现实,也就是同以自然语言为表现形式的普通逻辑思维实际密切联系。这是逻辑学的重要价值取向,也是其生命力之所在:大量事实说明社会大众,尤其是大学生,他们需要逻辑:改革幵放的新形势,要求研究新情况,解决新问题.尤其是大学生们希望逻辑学课程能帮助他们形成正确而敏捷的思路,对当前社会事件和学习课题进行推理和论证,提高思维能力和表述能力。逻辑学是一门工具性质的学科,只有得到实际应用,才体现出它的社会价值,同时逻辑应用也是获取其生存价值的必要手段。应用性是逻辑学的永恒的价值主题,要体现这一主题,关键是防治“逻辑恐惧症”,而防治“逻辑恐惧症”的灵丹妙药应该是改变逻辑理论与自然语言、日常思维相脱节的偏向,重视逻辑学的语言取向,紧密联系表达普通思维的自然语言,开发逻辑学在以自然语言为现实表现的社会思维实际中的应用。必须重视思维的语言载体,方正逻辑学的价值取向,将逻辑理论、方法、技巧,积极地向普通思维实际应用领域转化,充分体现逻辑学应有的价值和地位,形成该学科发展的良性循环。

二、辨析逻辑学研究对象

逻辑学研究的传统对象是人的思维,它强调研究思维形式及其规律。但是,什么是思维?心理学说思维是自觉的心理活动;哲学说是理性认识活动;神经科学说是神经搭接。可谓“仁者见仁,智者见智'莫衷一是。总之,都不具有直接现实性。思维形式或结构是什么?有关专家指出它是大脑的神经网络按照特定的规律、以特殊的形式形成的,是神经元的复杂搭接形式。如此说,思维形式或结构是相当复杂的,这样一来,强调研究思维形式就给逻辑学蒙上了神秘的面纱,使学习者容易产生心理障碍。实际上逻辑研究的所谓“思维形式”如所有S是p”“如果P,那么q”等等,并不是神经搭接形式,而是语言表达形式,或者称之为以语言模式化的思维的表达形式。而逻辑学称之为“思维形式”或“思维的逻辑形式”,一味地回避语言形式。波兰着名逻辑学家卢卡西维茨说思维是一种心理现象,而心理现象是没有外延的,一个没有外延的对象的形式指的是什么呢?思维形式这个表达式是不精确的。”他还说:“逻辑与思维的关系并不比数学与思维的关系多。”数学未强调它研究对象是思维,从基础教育到高等教育,数学被学生们饶有兴致地学习着;而逻辑学偏偏声称研究思维,便使曾经被编人中学语文的逻辑知识短文为了“降低难度”而删除,逻辑课在大学文科课程中虽被保存着,但也被学生视为“艰深难学”,没有兴趣;我国逻辑学家李先焜教授说一般都认为逻辑是研究思维形式和思维规律的科学,逻辑研究的对象是人的思维。实际上,这只是一种历史的观念,而且是一种不太科学的观念。逻辑研究的直接对象应该是语言。可以说,就其直接意义而言,逻辑研究的是语言。

语言可分为自然语言与人工语言。自然语言是人们日常使用的语言;人工语言是人工构造的表意符号系统.又称符号语言3逻辑学研究的词项、命题、推理等逻辑形式都表述为人工语言,这种人工语言实质也是自然语言的抽象,行使的是自然语言的某种职能。传统逻辑中全称否定命题“所有S不是P”是语言形式.现代逻辑将其形式化为VX(SP⑴),这是人工语言公式,不是所谓的“思维形式”。传统逻辑中所谓“思维形式”包括“概念”、“判断”等,确切地说应是心理学研究的对象。所以现代逻辑教材中使用“词项”、“命题”或“陈述”等术语取代“概念”、“判断”。逻辑学研究的主体是推理形式,这种推理形式在传统逻辑中是用“S是P”、“s不是P”这类语句组成的。现代逻辑中则是用的人工语言形式化,即以一定的符号所表述的公式。这些公式表示的是符号与符号之间的一种关系,这种关系表达的是客观的推理关系,具有客观必然性。可见,认为逻辑学直接研究的是语言符号,并不否认它是研究推理关系的科学,但是这与心理学的研究是有区别的,心理学研究思维形式,研究推理,因为思维推理本身是一种心理过程。心理学研究人们实际的推理心理过程,它是作为心理描述的科学。逻辑学研究符号表达的客观推理关系,不是描述心理过程。这是不能混淆的。这里、说逻辑学直接研究对象是语言符号、并不否认语言与思维的紧密联系。但是,逻辑学研究的符号公式不能直接称为思维形式。这里又需要将逻辑学与哲学认识论区别开来。哲学认识论直接研究思维,而逻辑学直接研究的是语言。当然,逻辑学最终要与哲学认识论相联系并受其指导。

说逻辑学研究语言,又要注意将逻辑学的研究与语言学的研究区别开来。尽管在西方存在着逻辑学与语言学逐渐融合的现象,但二者作为不同学科还是有区别的。李先焜先生指出:“逻辑学是一门规范性学科,语言学是一门描述性学科;逻辑学主要研究语言符号的定义方法和推理关系,语言学主要研究各种语句的表现形式;逻辑学主要研究语言的深层结构,语言学则比较重视语言的表层结构。”可见,同样以语言符号为研究对象,但逻辑学与语言学侧重点不同,方法不同,结果也不同。语言学着重于研究语形的形成,语义的情感意义;逻辑学着重研究语形的变形,语义的理性意义。

三、加强人工语言与自然语言的结合

逻辑学研究语言又有对象语言和元语言之分,像语言就是被研究的符号和语言,例如:各种命题形式、推理形式、逻辑规律的符号表达式;元语言就是用来讨论对象语言的语言,如关于各种命题形式和推理形式的定义,以及对各种推理规则的描述,使用的自然语言为元语言,我们的逻辑学教材中的兀语言具体说就是现代汉语。逻辑学研究的对象语言主要是人工语言(即符号语言),在逻辑学的研究及学习中,必须注重人工语言与自然语言紧密结合。逻辑学是理论性和实践性都很强的科学。逻辑学的研究与学习要解决这两方面问题,完成这两种任务都必须使人工语言紧密结合自然语言。其中,人工语言是工具,自然语言是基础。人工语言是直接研究领域,自然语言是应用领域,二者相辅相成。

首先,讨论、理解、掌握逻辑学的理论,必须将人工语言结合自然语言。逻辑学的对象语言是符号、公式等,是人工语言。对人工语言诠释、理解只有通过自然语言才能通俗易懂、深入浅出、生动活泼。命题形式是呆板的,推理演算是机械的,但自然语言是生动灵活的,自然语言表述的普通思维实际是具体形象的,逻辑学研究的人工语言(即符号语言〉与自然语言结合起来,逻辑学原理就有了血肉了。自然语言是活生生的,逻辑学的符号、公式等人工语言只不过是对自然语言的抽象。解释诸如命题式、推理式、逻辑规律表达式等,用确切而通俗的元语言——自然语言,将抽象的逻辑学原理、公式具体化、形象化,深人浅出,才能使学习者准确理解、尽快掌握逻辑学基本知识、基本原理。逻辑教学必须注重以生动引人的自然语言讲解逻辑概念、术语、原理、规律等,联系现实,举例引证,充分说明逻辑理论内容。这是首先要解决的逻辑学的理论性任务。

其次,要解决逻辑学的实践性的任务也必须是自然语言与人工语言结合。我国逻辑学家彭漪涟教授曾在《趣味逻辑学》一书中指出逻辑学的生命在于联系实际,逻辑学的力量在于指导实践”。解决逻辑学联系实际、指导实践的关键是逻辑学紧密结合自然语言=自然语言是逻辑学最广阔的应用领域,也是其最诱人的价值取向。离开了生动活泼的自然语言现实,将使逻辑学趋于机械、繁琐、呆板,那么逻辑学就会被人讥为“催眠术”、“符号游戏”。

回顾逻辑史的经验很值得重视。古希腊亚里士多德逻辑具有开创性贡献,因为它与自然语言紧密结合,研究论辩,适应社会需求,所以受到欢迎。古罗马逻辑主要讲授修辞中逻辑,为讲授锥辩术提供理论和方法的基础’所以社会影响很大,:在我国,先秦时期逻辑的研究也很有影响。{墨经》《无名》以及《白马论》等着作都是逻辑理论与自然语言结合的内容。这些都说明逻辑学源于当时社会语言现实,又眼务于社会语言现实,充分选择了积极、正确的价值取向,体现了逻辑学的应用意义与社会价值,显示了逻辑学旺盛的生命力。今天,逻辑学要生存、发展,同样要紧密结合自然语言,紧密联系思维实际,服务于现实需要,只有如此,才能重塑逻辑学的美好形象,发挥其工具作用,改变被冷落的困境。

语言表达思维,逻辑学中的符号语言表达式是以语言模式化的思维的表达形式。但是,现代逻辑的高度抽象化、形式化,往往脱离自然语言、思维实际。我国语言逻辑学家陈宗明教授曾经说现代人的思维是极其精密的,其语言表达也是丰富多彩的“形式逻辑的软弱无力是与它不重视自然语言的研究有关的……,它过度抽象,大大降低了使用价值。类似语言的表里问题,形式逻辑更是缺乏应有的关心。20世纪70年代,非形式逻辑与批判性思维迅速兴起,在国外已成为正式学科,许多学校开始了这种学科教学。这实际上是对高度形式化的逻辑学的辩证否定。要适应时代的要求、社会的需要,逻辑学研究及教学必须与自然语言紧密结合。让自然语言为逻辑学提供现实材料和新鲜课题。要以符号语言为工具,对自然语言内在意义、逻辑关系进行分析,揭举语言深层逻辑结构,解决自然语言中的逻辑问题。

常见的逻辑推理方式篇5

关键词:结构主义;现代逻辑学;结构;关系

关于数学与逻辑的关系问题,费雷格学派主张:“数学是逻辑学的一个分支”;布尔学派则认为:“逻辑学是数学的一个分支”[1]220。不争的事实则是:逻辑学与数学不能相互剥离,它们“血脉相连”、“生命相依”,二者“你中有我,我中有你”[1]220。从逻辑学和数学双重视域来看,形式化的现代逻辑学可以说是应用数学的一个分支,其高度抽象性和形式化特征决定了它像数学一样具有广泛的应用性。现代逻辑学的蓬勃发展,离不开对逻辑进行哲学反思。

逻辑哲学就是对逻辑进行哲学反思的科学。而数学哲学是数学的基础,“是研究数学的本体论、认识论和方法论以及其他问题的知识体系”,数学哲学研究的问题最后都会涉及到数学与逻辑的关系[2]15。虽然逻辑哲学与数学哲学在研究的论题、研究的视角、研究的侧重点和研究方式等方面都有所不同,但是由于逻辑(尤其是形式化的现代逻辑学)与数学具有如下共同特征:纯形式化特征、高度抽象性、极端精确性和严格性、广泛的应用性[2]15-16。这些共同特征以及数学和逻辑学常常具有一批共同或类似的课题,决定了逻辑哲学和数学哲学具有非常密切的关系。因此,从某种意义上说,对逻辑的哲学思考,很大程度上就是对数学的哲学思考。就像逻辑学与数学不能相互剥离一样,逻辑哲学和数学哲学其实也是很难剥离开来的。

20世纪以来,结构主义在数学哲学中占据着主导地位,那么结构主义是否在逻辑学中也有所反映呢?这正是本文要探讨的问题。

一结构主义的四大学派及其基本观点

19世纪,在微积分的算术化和集合论的建立基础上,逐步形成了数学基础的三大学派——逻辑主义、形式主义和直觉主义。逻辑实证主义者主张哲学唯一合法的研究领域是逻辑学,数学哲学则是研究数学语言的逻辑句法学和逻辑语义学[3]9。

20世纪初,哥德尔提出的不完全性定理说明,逻辑分析以存在建构自身作为参照,不然则会陷入无穷回归;而逻辑分析则是在集合论语言的基础上建构数学存在,这些观点蕴含了结构主义的思想[3]9。20世纪60年代,奎因认为,约束逻辑变元的取值其实就是存在,哲学本体论可以通过语言加以研究,利用语言可以研究存在,结构主义因而进行了数学哲学的范式转换。关系与其所依附的所有个体共同组成结构。根据结构所依附的个体的不同类型来看,数学结构主义主要包括四大学派:集合论结构主义[4]184-211[5]、先物(anterem)结构主义[4]188-198、范畴论结构主义[6][7]、模态结构主义[8]。

集合论结构主义使用模型论中熟知的方式,来描述数学结构及其相互关系。模态结构主义,不是通过对结构或位置进行字面上的量化,而是通过借助于适当的关系和定义域的(二阶)逻辑可能性,来满足经典公理系统的隐含定义条件[4]185。先物结构主义则主张:利用结构中的位置可以定义数学对象,数学对象的指称则要求结构与能够例示它们的任何系统是相互独立[9];数学公式能够由相干公式来描述,而且这些相干公式能够由实际存在的先物结构来满足[10]。范畴论结构主义本质上是通过一系列结构保持映射,为数学结构提供系统概念,从而为数学作出哲学解释[7]。夏皮诺(Shapiro)认为,虽然这些学派有着明显的区别,但是,不论是从主流数学的目的来看,还是从某种更深层次的哲学意义来看,这几大学派其实是等价的。例如:处理哲学问题的一种方法与处理这种问题的其他方法,具有关联性,这种关联性可以通过系统间的自然转换来表达[4]184。这些学派通过语言的途径,把数学哲学引向了对意义和真理的探讨以及对数学对象的存在建构[3]10。

结构主义对数学存在的语言建构是建立在逻辑主义、形式主义和直觉主义这三大学派的研究基础之上的。这三大学派认为:结构主义可以利用语言框架来建构数学对象,这一点在模态结构主义和集合论结构主义中表现得尤为明显,这使得结构主义的本体论建构与作为数学基础的逻辑研究之间能够建立起密切的关系,从而为逻辑学与本体论之间搭建了沟通的桥梁[3]12。范畴论结构主义挣脱了逻辑语言的束缚,创立了崭新的本体论语言,在把语言纳入存在的内涵的同时,还把存在上升到了语言的境界,并通过集合论与逻辑语言保持紧密的联系,从而使得存在建构能够像逻辑建构那样成为严密的科学[3]13。

二现代逻辑学具有结构主义特征

形式主义是20世纪上半叶出现的一种数学哲学思潮,它是极端唯名论在数学中的具体体现。而形式化则是现代逻辑学最重要的研究方法。形式化过程一般包括:进行预备性研究、构造形式系统并对其进行解释、关于形式系统的元逻辑研究这几大步骤[2]124-130。具体地说,对现实世界进行模拟的现代逻辑学形式系统,一般都遵循这样的研究思路:首先,根据研究对象给出一个没有歧义的形式语言,目的是规定哪些符号串是所研究的形式系统的合式公式;其次,给出这一形式语言的语义解释,这需要利用赋值给出合式公式有效性定义;然后,给出这一形式系统的公理和推理规则;再次,根据这一形式系统的语言、语义、公理和推理规则,寻找相关定理;最后,研究系统的可靠性、完全性、可判定性和复杂性等等。

哲学本体论是研究隐藏在真实世界背后存在的最高本质,即对本体、属性和关系进行哲学思考。因此,现代逻辑学本体论的现实原型就是现实世界的本体、属性和关系。从科学哲学的视角看,不论是计算机科学、应用数学,还是逻辑学,一般都遵循着相同的研究思想——结构主义的研究思想:重要的不是个体对象、集合,而是所研究对象的结构以及结构之间的关系。正如高斯所说:“数学是关于关系的科学,从关系中可以抽象出任何概念。”彭加勒也认为,“数学家不是研究对象,而是研究对象之间的关系”[11]1-34。计算科学的基本特征就是研究对象的构造性的数学特征,并利用定义和解释,在对现实中的对象进行抽象和模型化的基础上,给出相关定理的证明[12]89。

从19世纪末以来发展起来的数理逻辑、模态逻辑、动态逻辑(包括命题动态逻辑、量化动态逻辑)、认知逻辑、广义量词理论、类型逻辑语法、范畴类型逻辑等逻辑分支,都或明或暗地采用了结构主义的方法,即对象的结构化的总体特征常常靠利用公理化方法、对象间的映射与同构来加以研究。从20世纪以来,作为数学哲学的结构主义,就已经成为研究逻辑学的主导方法,在模态逻辑、命题动态逻辑、广义量词理论和范畴类型逻辑中表现得尤为突出。从总体上看,结构主义的特征在逻辑学一直或隐或显地存在着,正是这一结构主义特征激发了逻辑学界、科学哲学界等对结构主义进行深入研究的兴趣。

笔者认为:不论数学结构主义有多少种学派,也不论各学派之间有何分歧,逻辑学,尤其是形式化的现代逻辑学,几乎都或隐或显地采用了结构主义的研究方法。也就是说,形式化的现代逻辑学主要是描述各自论域中的各种研究对象的结构性特征及其相互关系,而不必考虑具体对象的内在的品质,不同的逻辑对象可以由其相应结构的性质或结构之间的基本关系来表示。

比如:模态逻辑充分考虑了含有“可能”和“必然”的模态语句的这一命题结构,引入了“可能”和(或)“必然”模态词,对传统的一阶逻辑进行扩展而得到的。因为预设的公理和推理规则不同,而得到的模态系统也不同,对这些模态系统的框架进行解释就可以得到不同的模型。认知逻辑则是模态逻辑的改版,即:把模态逻辑中的必然算子,解释成相信算子或知道算子等而得到的。虽然各个逻辑系统千差万别,但是,各个系统所给出的句法和语义,以及随之而定义的框架与模型和在此基础上对可靠性和完全性、可判定以及复杂性的探讨等等,都或隐或显地彰显了结构主义的特征。

由于很多数学都研究抽象的结构,因此,数学结构主义在数学哲学中占据着主导的地位。根据数学结构主义的观点,数学理论描述各自论域中的结构的性质,而不必考虑所讨论对象的内在品质[13]。狄德金主张把数学结构作为以集合、运算和关系的系统的基础,并认为同构概念与结构的类型紧密相关[3]10。为了准确清晰地表述“结构”或“结构映射”的概念,数学只有利用集合论,或者只有利用作为结合论的一个分支的模型论,才能够准确表征结构、结构映射等概念。因此,集合论就成为结构主义重建数学的语言基础,成为结构主义表述各种数学对象及其相互关系的基本语言。作为现代逻辑学的重要分支之一的广义量词理论,集合论语言是其基本语言,因此,广义量词理论也采用了结构主义的研究方法。下面,笔者将以广义量词理论为例,来考察结构主义在现代逻辑学中的具体体现。

三结构主义在现代逻辑学中的具体实例

广义量词理论是揭示广义量词的普遍语义性质和推理特征的自然语言逻辑理论。集合论视域下的广义量词是通过对自然语言中的名词短语或其限定词进行语义解释后而得到的。即:广义量词对应于所有名词短语或其限定词的指称。一阶逻辑的全称量词和存在量词也是广义量词。可见,广义量词理论是在一阶逻辑和集合论的基础上发展起来的,它对广义量词的真值定义是建立在标准模型论的基础之上,广义量词的量化论域是由个体组成的集合,真值的模型论概念则是利用非逻辑符号的解释和量化论域来加以表述的[14]40-41。广义量词理论以集合论语言作为其基本语言,而集合论语言是结构主义表述各种数学对象及其相互关系的基本语言,因此,广义量词理论在诸多方面都体现了数学结构主义的思想。

(一)广义量词的同构闭包性彰显了结构主义的思想

1957年,莫斯托维斯基(Mostowski)为〈1〉类型广义量词附加了这样条件:不允许我们对论域中的元素加以区分。1966年,林登斯托姆(Lindström)把这一条件推广到更为普遍的情况,而且这一条件得到了逻辑学家的公认。这一条件被称为同构闭包(isomorphismclosure),即:在逻辑中,只有结构才是重要的,个体对象、集合本身并不重要。这一思想与数学哲学中的结构主义思想不谋而合。用逻辑的术语来表述同构闭包的思想就是:如果一个逻辑语言中的语句在一个模型中为真,那么该语句在所有的同构模型中为真。即:逻辑是主题中立的[14]95。如果逻辑是独立于主题事物,那么逻辑常元将在论域间的任意双射下都是不变的,或者更弱一点地说,逻辑常元在论域的任意置换下是不变的[14]324-325。比如:假设把“学生”一一映射成“狗狗”,把“面包”一一映射成“骨头”,把“在吃”一一映射成“在啃”,那么,如果“每个学生最少吃三块面包”在一个模型中为真,那么“每个狗狗最少啃三块骨头”肯定在其同构模型中也为真。这说明,“每个”和“最少三(块)”具有同构闭包性。可见,逻辑学对所有对象都同等对待,逻辑性质不但在严格变换下是不变的,而且在所有双射下也是不变的[14]325。

同构闭包不仅仅局限于量词。比如,命题联结词也不关注主题事物:合取词可以统一运用于两个语句或两个集合或两个别的对象,而不考虑这两个对象的具体内容,仅仅考虑这两个对象的结构。这说明,同构闭包表达的思想与结构主义的思想也是相通的。对于自然语言量化而言,同构闭包具有重要的意义。莫斯托维斯、林登斯托姆、塔斯基和范本特姆都认为,满足同构闭包性是满足逻辑性的必要条件[14]327-328。值得我们注意的是,逻辑学家和计算机科学家,在实践中提出的所有形式语言都具有这样的性质:真在同构下得以保持,在系统中使用的所有算子以及由这些算子定义的别的所有算子,都满足同构闭包性[14]328。

(二)广义量词的真值定义体现了结构主义的思想

从语法的视角看,一个广义量词是一个变元约束算子,此算子把每个定义域与其任意子集间的一个二元关系联系起来。从语义的视角看,一个广义量词是一个映射,此映射通过表征广义量词的论元集合的性质或论元集合之间的关系,来揭示广义量词的语义性质[15]。例如:每个亚氏量词(即:all、some、no、notall这四个特殊的广义量词)实际上表示的是个体的集合之间的一个特殊的二元关系。比如:在“所有学生都去操场了”中,令论域中所有学生组成的集合用S表示,论域中所有去操场的个体组成的集合用P表示,这一语句就可以表示为all(S,P)这一三分结构,其真值定义all(S,P)⟺S⊆P的意思是,集合S是包含在集合P中,即:论域中,所有学生组成的集合包含在所有去操场的个体组成的集合中。

从以上的分析可以看出,广义量词理论很好地诠释了数学结构主义的内涵。比如:all(S,P)这一三分结构还可以表示“所有的人都是要死的”、“所有的狗狗都要睡觉”、“所有的大米都吃完了”等等,这里的“学生”“人”、“狗狗”“大米”等对象所组成的集合S,以及这些对象分别与“去操场了”、“要死的”、“要睡觉”和“吃完了”等对象所组成的集合P,这些具体对象本身并不重要,重要的是这些语句都可以用all(S,P)这一三分结构来加以统摄。其真值条件就是,当S⊆P(即S包含于P时)时,all(S,P)就为真。

(三)广义量词理论对单调性的处理也展示了结构主义的思想

广义量词的单调性是广义量词最为重要的语义性质。例如:至少三分之二的学生认真完成了作业。⟹至少三分之二的学生完成了作业。令S表示论域中所有学生组成的集合,P表示论域中认真完成作业的个体组成的集合,P′表示论域中完成作业的个体组成的集合。“至少三分之二的学生认真完成了作业”可表示成atleast2/3(S,P)这样的三分结构,“至少三分之二的学生完成了作业”可表示成atleast2/3(S,P)这样的三分结构。这一单调性推理可形式化为atleast2/3(S,P)⟹atleast2/3(S,P′),由于P⊆P′,由P到P′,集合在增大,因此,这一推理体现了“至少三分之二的”这一广义量词的右单调递增的性质。而P⊆P′可以理解为,所有的P都是P′,这可表示成all(P,P′)。具体地说,就是:所有认真完成了作业的个体都是完成了作业的个体。这一单调性推理其实是省略了all(P,P′)这一前提的广义三段论推理,其形式化结构为:atleast2/3(S,P)∧all(P,P′)⟹atleast2/3(S,P′)。事实上,所有关于广义量词的单调性推理,都是省略了一个暗含前提的广义三段论推理。

可见,广义量词理论对单调性的处理所使用的基本语言也是集合论语言,这一语言也是结构主义的基本语言,因而体现了结构主义的思想。1984年范本特姆提出的利用数字三角形方法,来表征具有驻留性、扩展性和同构闭包性的〈1〉类型和〈1,1〉类型广义量词的单调性,其背后也暗含了浓烈的结构主义思想。限于篇幅,不再详细论述。

(四)基于广义量词理论的广义三段论推理蕴涵了结构主义的思想

正如一阶逻辑的全称量词和存在量词是广义量词的特例一样,亚氏三段论也是广义三段论的特例。自亚里士多德开始的很长时期内,对亚氏三段论的有效性的研究,几乎都是采用的是非形式化的方法。自从有了广义量词理论后,对包括亚氏三段论在内的广义三段论的研究,就可以用形式化的方法来对其进行表示和有效性的证明[1]155-202。而且利用广义量词理论,不仅可以对24个有效的亚氏三段论进行形式化,而且还可以对其进行公理化[16]。这种形式化的逻辑研究方法不仅拓展了逻辑研究的范围、提升了逻辑学的研究能力,更重要的是有利于计算机科学中的知识表示、知识推理和自然语言信息处理。

广义量词理论完成以上这些任务主要还是利用了集合论语言,彰显了结构主义的思想。具体地说,就是充分利用了“含有〈1,1〉类型的广义量词Q的量化语句具有Q(S,P)这样的三分结构”这一知识。〈1,1〉类型的广义量词揭示的是所涉及的左论元所组成的集合与其右论元所组成的集合之间的二元关系。〈1〉类型的广义量词揭示的是所涉及的论元所组成的集合的性质。由于自然语言中的广义量词绝大多数都是〈1〉类型和〈1,1〉类型的广义量词,而且对〈1〉类型的广义量词的研究可以转化为对其〈1,1〉类型的亲缘广义量词的研究[1]46。因此,利用这一结构主义思想,就可以对自然语言中绝大部分广义三段论进行形式化和有效性的证明。简言之,这一结构主义的研究方法具有很强普适性。

例如:“所有渴望暴富的人都是浮躁之人。大多数人都是渴望暴富的人。所以,大多数人都是浮躁之人。”其中的“大多数的”对应的是〈1,1〉类型的广义量词。令论域中所有人组成的集合用S表示,论域中浮躁之人组成的集合用P表示,论域中渴望暴富的人组成的集合用M表示。利用结构主义的形式化表示方法,这一广义三段论,可以形式化为:all(M,P)∧most(S,M)⟹most(S,P)。利用广义量词的真值定义就可证明这一广义三段论的有效性。证明:假设all(M,P)与most(S,M)这两个条件均成立。根据all和most的真值定义可知:all(M,P)⟺M⊆P,且most(S,M)⟺|S∩M|≥|0.55|S|,因此,|S∩P|≥0.55|S|。再根据most的真值定义“most(S,P)⟺|S∩P|≥0.55|S|”可知:most(S,P)成立。证毕。对亚氏三段论和其他广义三段论的形式化及其有效性的证明均可以类似处理。可见,利用结构主义的形式化研究方法,可以简洁明了地对包括亚氏三段论在内的广义三段论进行形式化及其有效性的证明。

笔者多年的研究表明:这一结构主义研究方法普适性非常强。因为不论是自然语言中无处不在的广义量词的单调性推理,还是亚氏三段论推理,抑或是广义三段论推理,以及建基于这三种推理之上的语篇推理,都可以使用这种结构主义的研究方法来进行形式化及其有效性的证明。

四结论

常见的逻辑推理方式篇6

逻辑学是一门古老的科学,这门科学最早由古希腊哲学家亚里士多德所创立。从两千多年前中国的墨子和古希腊的亚里士多德到近代英国思想家培根、穆勒,从19世纪的马克思、恩格斯到20世纪对马克思主义持不同见解的罗素、卡尔纳普都曾经对逻辑学进行过深入的研究。在很长一段时期里,逻辑学与哲学、修辞学和论辩术等方面的学问交织在一起。经历了一个漫长的过程,它才逐渐从相关学科中分化出来,成为一门独立的科学。到了欧洲近代,才通用“逻辑”一词来指称研究推理或论证的学问,这种用法沿用至今。

一、法律逻辑学的功能定位

法律逻辑学作为一门学科则是在20世纪才逐渐形成的。在我国,对法律逻辑学的研究起步更迟,直到20世纪80年代初期才有法律逻辑学的教科书问世。从功能上看,法律逻辑学是一门工具性的学科,主要是为人们的法学理论和法律实践工作提供有用的逻辑知识及逻辑思维方法。法律是人们的行为规范体系,承担着保障社会有序、正常运做的职能,同时它还是人们维护自身权益、惩治犯罪行为的基本依据。法律必须具有严谨性和准确性,否则它就不可能具有权法律逻辑学教学思维威性,所以在法学理论研究及法律工作的每一个环节,诸如立法、司法、执法都要讲究逻辑。法律与逻辑之间向来有着密切的联系。就立法来讲,作为一种行为规范体系,法律必须明确地告诉人们:什么应该做,什么不应该做;公民享有何种权利、承担何种义务,等等。法律条文不容含糊其词,更不可以自相矛盾,不然人们就会无所适从,社会生活就会陷于混乱。所以在制定法律时,必须注意对概念作出准确严密的定义,注意条文之间的逻辑关系,注意不同法律之间的协调一致不得冲突,这些都需要运用法律逻辑学知识加以推敲和衡量。就司法过程而讲,我国的基本原则是“以事实为依据,以法律为准绳”,而查清事实、核实证据、适用法律一直到审理结案,各个环节都离不开判断、命题、推理、证明、反驳这些思维活动。由于法律逻辑学以思维形式的逻辑结构和逻辑规律为研究对象,而这一点又与普通逻辑相同,所以对于初次接触法律逻辑学的人而言,概念、内涵、外延、判断、命题、推理等普通逻辑中的术语显得过于抽象,由于不易于理解,便会使初学者对于法律逻辑学的学习产生畏惧心理,进而由畏惧到抵触法律逻辑学的学习,从而不能达到学科教学的要求和目的。然而作为任何一个研习法律的学习者或者法律工作者而言,法律的特点之一是讲究准确、严密,无论是制定法律法规,抑或适用法律过程中对案件的审理、定性和量刑,还是律师进行辩论、拟定各类法律文书都是这样。法律工作者的思想表达和论证过程是否准确、严密,直接关系到法律的严肃性和权威性,关系到涉案当事人的命运,关系到社会秩序和社会正义的维护,因此决不可以掉以轻心。而法律逻辑学恰恰是帮助法律工作者掌握理性思维、严密推理的有效工具,如果没有法律逻辑学的根基,那么研习者就无法真正掌握法律这门技艺。

二、法律逻辑学理论教学思维探析

法律逻辑学是一门关于科学思维和表达的基础理论学科,它的抽象性往往使人在学习原理时觉得乏味,而思维的确定性和表达的灵活性又常常使人在运用逻辑时感到困惑。为了改变以往那种法律逻辑学教学高头讲章式的艰深和书斋摆设式的空泛,收到既能提高学生逻辑素养,又能陶冶学生高尚情操,既教书、又育人的双重效果,我在教学实践中作了一些探索:

(一)明确学习目的并激发受教者的学习兴趣

爱因斯坦曾经说过:兴趣是最好的老师。对于任何一个法律逻辑学的初学者而言,单一地对他强调学科的重要性,倒不如让他对该学科产生兴趣更能让他对学习有欲望。本人在从事法律逻辑学的教学过程中,深知法律逻辑学以抽象的推理让初学者生畏,如果一味地照搬教学大纲,很可能导致大多数学生听课如同嚼蜡,懈怠之心一生,再往后听讲如同听天书,实在贻害无穷。故本人在授课伊始便注重培养学生兴趣,比如春晚是国内收视率极高的节目,而近年来春晚有小品类节目以脑筋急转弯为卖点,以该节目为例,指出所谓脑筋急转弯其实不过是故意违反逻辑的基本规律——同一律而已。以此为例,学生会感觉看似晦涩难懂的法律逻辑学其实并不深奥,于是向学之心渐强。再比如,部分学生痴迷于侦探作品,有些甚至带到课堂上来看,针对此种情形,本人举出福尔摩斯如此深入人心,正是因为他屡屡使用科学的演绎法来侦破案件,而演绎法正是逻辑推理方式之一。

(二)采用参与式教学模式提高受教者的主观能动性

苏格拉底教学法历来倍受推崇,一方面是因为它能让施教者与受教者同时参与,另一方面是在这种平等的讨论的同时,双方产生激烈的思想碰撞,从而使真理得以发现。在教学中,让学生参与课堂讨论,首先能让学生感到自己的思路和想法受到重视,从而会更加认真地去思考问题和理顺自己的思路;其次,学生的广泛参与讨论可以使不同的想法得到交流,没有最好,只有更好,通过讨论,学生必然可以找到解决问题的最佳方式。传统的教学方法中,施教者和受教者界限分明,施教者主要以讲授为主,受教者主要以被动接受为主,二者之间缺乏有效互动,而且受教者可能只是机械理解了施教者的思路,却很难做到融会贯通、举一反三,而苏格拉底教学法是一种教师和学生之间互动的教与学的关系,不仅是教师,学生在整个教学中也扮演着极为重要的角色。通常是教师随机向某一学生发问,只要该学生能够回答问题就会被一直问下去,在这一问一答中向在座的学生传递着所要教授的信息。教师的问题应具有启发性,引导学生去发现和理解。整个课堂就是在教师与学生,学生与学生之间互相提问、互相回答、甚至互相争论中度过。逐步地,不同的个人见解可以形成统一意见,对法律逻辑基本理念和原则的理解也可达到一定程度的共识。而且,不同角度的回答和辩论,还带来了新的法律思维和视野。更重要的是,学生在获得法律逻辑知识的同时,也得到了充分地职业化的法律思维和技能的训练。

常言道:“授人鱼,不如授人以渔”,可见学习方法对于受教育者的重要程度,同时,高等教育与其他教育的区别之一就在于受教育者自学意识的树立,因此在法律逻辑的教学过程中,除了采取苏格拉底方法提高学生自己思考的能力,还应该让学生意识到作为法律逻辑并不是孤立的,而是与其他社会科学紧密相联系的,比如历史学、政治学、社会学等等。要鼓励学生在课后多读社科类书籍,并不仅局限于法学书籍,从而达到知识的积淀,分析问题能够拥有更宽广的视角,正所谓:欲穷千里目,更上一层楼。

三、法律逻辑学实践教学探析

(一)教学内容上要体现法律逻辑的特点

开设法律逻辑的目的主要在于让学生能利用逻辑知识来解决法学领域中的逻辑问题。教师在讲授这门学科时,一定要注意把基本的逻辑原理与法律知识结合起来,并根据法律逻辑自身的特点进行讲授。那么,法律逻辑究竟有没有自己的特点呢?答案是肯定的。就概念而言,形式逻辑在论述概念与语词的关系时,认为概念与语词不是一一对应的。但在法律领域内,概念与语词却是一一对应的。例如,“判决”、“裁定”、“决定”、“法人”、“”、“抗诉”、“非婚生子女”等语词,它们与自己所表达的概念之间,都是互相配对的,不能替代也不能拆换的。同样,法律定义也有自己的特点。由于法律是按照统治阶级的意志和利益,由国家制定或认可的,是人们的行为准则,所以,法律定义必须是统治阶级根据本阶级的利益决定的,只要经国家依照法定程序规定出来,就要求全社会遵照执行。即使该法律规定得不够恰当,只要国家没有修改或废除,它仍然是合法的、有效的。因此,法律定义只有恰当不恰当的问题,谈不到真假问题。此外,法律定义在结构上也有它自身的特点,这主要表现在两方面。首先是被定义概念反映的对象必须具备若干必要条件,这些条件缺一不可。如“”必须具备三个条件:1.国家工作人员;2.利用职务上的便利;3.索取他人财物或者非法收受他人财物为他人谋取利益。其次是被定义概念反映的一类对象包括若干种不同的情况,它们各自具有不同的本质特征,这些特征用“或者”联结。如:“在犯罪过程中,自动放弃犯罪或者自动有效防止犯罪结果发生的,是犯罪中止。”这个定义提示了犯罪中止的两种情况,只要行为人的行为符合其中一种情况,就属于犯罪中止。这种定义事实上是一种选言判断。在推理中,定罪三段论与量刑三段论与一般的三段论相比,也有其自身的特点。以上例子说明,法律逻辑确有它自身的特点,教学中教师如果忽略了这个问题,那么他所传授的就是一种逻辑基本规则加法例证的“皮加毛”式的法律逻辑,而并非真正意义下的法律逻辑。

因此,教师在教学中一定要充分抓住法律逻辑自身的特点进行教学。对于模态判断,要详细分析实际判断和必然判断的区别,对法律条文中常用的带有“应当”、“必须”、“可以”、“不得”之类的模态词的判断要进行逻辑分析。对于一些容易混淆的法律概念,如:“撤消”、“撤回”、“法人的法定代表人”、“法人的人”等概念应从概念的内涵和外延方面去区别。此外,为了提高学生分析问题和解决问题的能力,应结合案例讲授推理的逻辑性、有效性;为了提高学生的善辩能力,应把逻辑知识与法庭论辩技巧结合起来进行教学。诸如法庭辩论中反驳的基本技巧、法庭论辩中的论证、各种推理在法庭以及办案过程中的运用等等。

你会喜欢下面的文章?

    写人作文范文(整理27篇)

    - 阅0

    写人作文篇1我有一个姐姐,她很漂亮,有着一头又长又黑的头发,水汪汪的大眼睛像黑宝石一样,一个樱桃般的小嘴。但你可别看她漂亮,她可是很花痴的。一次,我拿着一位明星的照片给姐姐.....

    春节范文三年级作文(整理6篇)

    - 阅0

    春节范文三年级作文篇1除夕的前几天,我很盼望过年,恨不得一头栽进被子里美美地睡到除夕的早上。除夕终于到了,我和姥姥早上出去挂彩灯。我家的彩灯真美丽:有喜庆的大红灯笼;有能.....

    中国成立年变化歌唱祖国的建国周年

    - 阅0

    2019建国70周年心得篇1小草为风儿歌唱,鸟儿为森林歌唱,浪花为大海歌唱,而我,要为您歌唱!我的祖国,我最亲爱的祖国!我歌唱祖国的“钢铁长城”!古时,长城是我国的“守护神”,守边疆、守.....

    春节拜年作文左右范文(4篇)

    - 阅0

    有关春节拜年作文300字篇1过年那天,家家户户的门上都贴着一对对联,上联是:“好日子红红火火。”下联是:“全家平安添百福。”横批是:“富贵平安。”我家门前有一个大大地福字是.....

    班务总结(收集7篇)

    阅:0

    有关班务总结篇1本学期各项工作即将结束,我们班级全体教师坐在一齐,对照本学期初制定的班级工作计划,回首所做....

    常见的逻辑推理方式(6篇)

    阅:0

    常见的逻辑推理方式篇1论文摘要:逻辑学是研究推理的一门学问,而推理是由概念、命题组成的,不懂得命题就不懂得....

    那盏灯作文(收集9篇)

    阅:0

    那盏灯作文篇1每个人的心中都有一盏美丽而明亮的灯,指引我们前进的道路,让我们走向目标。但是每个人心中的那....