循环泵(收集5篇)
来源:
循环泵篇1
关键词:再循环门;汽蚀
中图分类号:TK233.52文献标识码:A文章编号:1674-7712(2013)22-0000-02
火力发电厂做功的过程是依靠水的循环(即经过处理的水和凝结水由除氧器除氧后经给水泵加压送到锅炉,在锅炉内受热产生蒸汽,蒸汽在汽轮机内膨胀做功后经冷凝器冷凝为水,并如此循环往复)来实现的。在整个循环过程中,给水泵的安全运行是实现这个循环的关键。给水泵的出水量是随锅炉负荷而变化的。在启动时或在负荷很低时,给水泵很可能在给水量很小或给水量为零的情况下运行,液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。这种产生气泡的现象称为汽蚀。汽蚀时产生的气泡。流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。给水泵在运转中,若其流过部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面,冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致给水泵的性能下降,严重时会使泵中液体中断,不能正常工作,同时汽蚀时传递到叶轮及泵壳的冲击波,加上液体中微量溶解的氧对金属化学腐蚀的共同作用,在一定时间后,可使其表面出现斑痕及裂缝,甚至呈海绵状逐步脱落;发生汽蚀时,还会发出噪声,进而使泵体振动;同时由于蒸汽的生成使得液体的表观密度下降,于是液体实际流量、出口压力和效率都下降,严重时可导致完全不能输出液体。
为防止上述现象的发生。大型火力发电机组的给水泵运行都必须保持一定的特性曲线,为保证其安全运行必须使其工作在特定的区间,所以给水泵都安装有最小流量再循环调节阀,简称再循环阀或最小流量阀,安装在给水泵出口管道的支管上,接入除氧器。以保证在任何情况下都必须有一个最基本的流量,也就是给水泵的最小流量。当机组启动或者低负荷运行时,锅炉给水量需要量很小或不需要流量时,就会打开再循环阀,(一般为额定流量的30%左右)将一部分水返回除氧器水箱,以保证有一定的水量通过给水泵,而不致使泵内水温升高而汽化。而当给水量处于正常条件下时,再循环系统关闭。以保证给水泵的安全运行。
郑州新力电力有限公司发电机组给水泵保护再循环系统由最小流量阀、止回阀、流量测量系统,DCS控制系统组成。其中流量测量系统确定何时开启或关闭再循环系统。当给水泵流量大于等于410t/h时控制系统联关再循环电动门,当给水泵流量小于等于190t/h时控制系统联开再循环电动门,一部分水通过再循环门去除氧器。在机组实际运行过程中给水泵再循环电动门经常出现误动或拒动的情况,严重影响给水泵的安全运行。
我们对机组给水泵再循环保护的实际运行情况进行了调查,并统计了其四个季度及全年的正确动作情况如下图:
在实际工作中要求给水泵再循环保护动作百分之百正确,所以必须提高给水泵再循环保护动作的可靠性。我们热工专业技术人员对设备各个环节进行了认真分析检查,并根据缺陷记录,检修记录逐条分析。首先分析了给水泵再循环电动门,继电器及接线等外部设备情况,其设备主要是硬接线,从缺陷记录上看很少出现故障,所以可以排除。其次DCS系统保护控制回路,由于DCS是双电源,双DPU,系统处于封闭状态一般不会感染病毒,系统的可靠性是相当高的。从缺陷记录上看也可以忽略不计。其次分析现场环境原因:因为差压开关的抗震性能较好,可以排除现场振动的影响,同时可以排除系统测量管道有空气造成冲击的影响,这是客观条件,不能改变。只能提高测量元件的抗干扰和抗冲击能力。
经过全面的分析,造成给水泵再循环保护动作可靠性低的主要原因是当低负荷时给水流量在定值附近时波动比较大,同时由于差压开关抗干扰差,差压开关没有较好的阻尼特性,会造成差压开关的频繁动作,致使定值的准确性和接点的通断都难以保证100%正确。
热控专业技术人员通过研究讨论,先期提出了两个改进方案。第一个方案是更换新的差压开关,第二个方案是将差压开关更换为差压变送器。随后对这两种方案的优缺点进行了比较、选择,如表1。
由上表可以看出,方案一虽然解决了定值和接点准确动作的问题,但缺点依然存在,而方案二虽然需要改动管路及组态,但却可以很好的解决现实存在的所有问题,所以我们经讨论研究决定执行方案二,并制定对策实施步骤:
步骤一、更改测量管路以配合变送器测量。热工人员利用机组大修,将4个给水泵再循环差压开关取消,重新安装管路后,安装了两台差压变送器。
步骤二、修改给水泵再循环保护的组态并设置定值。改造前给水泵再循环差压开关的定值是通过校验台校验设定的,改造后,原差压开关取消,改用差压变送器,可以精确测量流量的实时值,然后利用DCS控制系统功能非常强大的特点,对给水流量进行补偿计算,使给水流量更精确,在组态软件中设定给水流量动作上限及下限,当给水流量大于等于410t/h时保护联关再循环电动门,给水流量小于等于190t/h时保护联开再循环电动门。于是上述差压开关存在的问题迎刃而解。对于给水系统管道有空气扰动冲击,也由于差压变送器自身的阻尼特性,和在DCS控制系统中加装了延迟模块得到有力的化解,并且差压变送器的模拟量信号直接送入DCS,也免去了繁琐继电器控制回路,减少了故障点。
改造后给水泵再循环保护系统运行良好,动作正常。我们统计了6-9月份的动作情况,如表2给水泵再循环保护动作可靠性达到了100%!
通过本次技术攻关的成功实施,确保了机组给水泵能够工作在安全的特性区间,保证了机组的稳定运行。能够有效的延长给水泵的寿命,形成了不可估量的隐形效益。
循环泵篇2
【关键词】循环水泵;技术经济比较;火力发电厂
引言
西北地区部分火力发电厂因冬季供热,凝气量减少,造成冬、夏季需冷却水量差别较大。本文就以新疆阿勒泰地区某小型火力发电厂为例,对水泵的选择及运行方案进行比较并做结论。
1.概述
本电厂为新建工程,本期容量为2×135MW超高压、一次中间再热、单抽、凝汽式机组,配2台超高压、一次中间再热440t/h煤粉锅炉;并预留扩建场地。
现就本期工程的循环水泵是否调速运行提出以下两种方案:
方案一:本期供水系统采用带自然通风冷却塔的二次循环供水方式,扩大单元制供水系统。2台135MW机组配2座2500m2自然通风冷却塔,塔前设1座集中循环水泵房,泵房内设置4台单速循环水泵。两座冷却塔布置在主厂房的东侧,循环水泵房布置在2座冷却塔西侧中间位置。
方案二:本期供水系统采用带自然通风冷却塔的二次循环供水方式,扩大单元制供水系统。2台135MW机组配2座2500m2自然通风冷却塔,塔前设1座集中循环水泵房,泵房内设置4台循环水泵,两台单速水泵、两台双速水泵。两座冷却塔布置在主厂房的东侧,循环水泵房布置在2座冷却塔西侧中间位置。
2.循环冷却水量
本期工程安装2台135MW湿冷凝汽式汽轮发电机组,供水系统采用带自然通风冷却塔的二次循环供水系统。根据机组参数,1台135MW机组在各工况下凝气量为:TRL工况:292.763t/h,冬季供热工况:100.70t/h
经供水系统优化计算,凝汽器的夏季冷却倍率取60,春秋季冷却倍率取50,冬季的冷却倍率取45。夏、冬季及凝汽器循环冷却水、辅助设备冷却水和其它附属设备冷却水所需的循环水量如下:
夏季:两台机冷却水量为35132m3/h;辅机水量为3120m3/h,共需冷却水量为38252m3/h;
冬季:两台机冷却水量为9064m3/h;辅机水量为3120m3/h,共需冷却水量为12184m3/h。
3.供水系统布置
本期2×135MW机组冷却塔采用2座2500m2的钢筋混凝土双曲线自然通风冷却塔。每台135MW机组配1座2500m2自然通风冷却塔,2台循环水泵。1号机对应的1#冷却塔位于主厂房固定端;2号机对应的2#冷却塔位于主厂房扩建端。循环水泵房至主厂房前压力钢管及主厂房至冷却塔压力钢管均为DN1800钢管,辅助冷却水管为DN600钢管。循环水自流沟为钢筋混凝土结构,断面1.6m×1.6m。
4.循环水系统水力计算
本期供水系统采用带自然通风冷却塔的二次循环供水方式,扩大单元制供水系统。
供水系统阻力计算结果如下:
凝汽器:4.80(3.89)m,静扬程(冷却塔水池水面中央竖井设计水位):9.3m,系统局部和沿程水阻:5.85(4.74)m,富裕量:0.3m;共计:20.25(18.23)m。
注:括号内为冬季供热工况供水系统阻力
5.循环水泵选型比较:单速泵与双速泵的比较
5.1循环水泵选择
5.1.1方案一:
根据循环冷却水的流量和扬程,本工程共选四台泵,其中大流量泵2台,小流量泵2台。夏季一机两泵(一台大流量泵,一台小流量泵)运行,冬季一机一泵(一台小流量泵)运行,所选循环水泵参数如下:
大流量泵:2台;流量:3.62m3/s;扬程:24m;效率:88%;配电动机功率:950KW;电压:6000V;
小流量泵:2台;流量:1.70m3/s;扬程:19m;效率:88%;配电动机功率:425KW;电压:6000V
5.1.2方案二:
根据循环冷却水的流量和扬程,本工程共选四台水泵,其中单速泵2台,双速泵两台。夏季一机两泵运行(一泵定速,一泵高速);春秋季一机两泵运行(一泵定速,一泵低速);冬季一机一泵低速运行。所选循环水泵参数如下:
定速泵:2台;流量:2.66m3/s;扬程:21m;效率:88%;配电动机功率:710KW;电压:6000V。
双速泵:2台;流量:2.66m3/s(高速);1.70m3/s(低速);扬程:21m、19m;效率:88%;配电动机功率:710KW、425KW;电压:6000V。
5.2综合经济性比较
方案一:
循环水泵价格:大流量泵两台,每台单价:105万元;小流量泵两台,每台单价:40万元;共计:280万元。循环水泵运行状况:启停水泵台数控制流量。
方案二:
循环水泵价格:单速泵两台,每台单价:55万元;双速泵两台,每台单价:85万元,共计:290万元。循环水泵运行状况:调整水泵转速调整流量
综合评价:方案一较方案二增加10万元,但方案二较方案一春秋季运行更合理,电耗及水量损失较小。本工程为供热电厂,夏、冬季循环水系统运行工况要求多,方案二运行费用较低,对运行人员的要求也较低。因此,推荐方案二。
6.立式泵与卧式泵的比较
循环水泵有立式和卧式两种,立式泵优点是单独布置,占用场地较小,但价格较卧式泵较贵,泵房高度较高,检修困难。卧式泵占地稍大,但工程实例较多,应用广泛,且价格较立式水泵较低,泵房高度较低,检修方便。
以下是对两种泵在本工程中运用情况的比较。
立式泵:
循环水泵房尺寸:32.4m×15m×24.2m、每座泵房造价:408.24万元;循环水泵价格:每台单速泵:75万元、每台双速泵:87万元;共计:732.24万元;
卧式泵:
循环水泵房尺寸:36m×15m×18.5m,每座泵房造价:349.65万元;循环水泵价格:每台单速泵:65万元,每台双速泵:75万元;共计:629.65万元。
7.结论及建议
根据工程总体投资比较,采用卧式泵方案比采用立式泵方案初期投资少102.59万元,且电厂厂内空间较大,立式泵房相较卧式泵房节省的空间并无他用;2台定速2台双速泵结合形式较4台定速泵形势初期投资少10万元。且从运行的角度考虑,对于供热机组,采用2台定速2台双速泵运行控制比较灵活,对运行人员的素质也要求较低,比较适合西部地区的实际情况。
立式泵单独布置,占用场地较小,但价格较贵,泵房高度高,检修困难。卧式泵占地稍大,但工程实例较多,应用广泛,且价格较低,泵房高度低,检修方便,投资较少。
因此,本工程推荐采用4台卧式循环水泵,其中两台定速泵,两台双速泵的方案。
参考文献:
[1]《火力发电厂水工设计规范》DL/T5339-2006.
[2]《泵站设计规范》GB50265-2010.
循环泵篇3
【关键词】电动机;变频节能;效果分析;DCS控制
引言
开工循环泵是醋酸合成系统的关键设备,其电能消耗占系统动力消耗的10%以上。传统泵类通过改变进出口阀门或挡板的开度调节流量,而采用变频调速技术,通过改变电机的转速来调节流量比传统的改进出口阀门和挡板的开度节技术更快和更精确,还可以实现电机的软启动,减少对电网的冲击和对设备损耗,并达到节约电能的目的。
本文介绍了我公司采用ABB公司的ACS-800变频器对原有的开工循环泵电动机进行变频节能改造方案,并对节能效果进行了分析。
1变频调速节能原理
开工循环泵是一种离心泵,该泵是通过调节阀门的开度来实现流量调节的。如阀门在泵的出口,当开度减小时,阻力增大,不适宜大范围调节流量。如阀门在泵的入口时,可增大调节范围,但节能效果不如变频调速。当采用变频调速时,出入口阀门全部打开,只改变泵的转速,不改变管网介质的阻力。从流体力学的原理得知,使用感应电机驱动的离心泵,其轴功率P与流量Q,压力H的关系为:
P=K×H×Q/η
当电机转速由n1变化到n2时,流量Q、压力H和轴功率P与转速的关系如下:
Q1/Q2=n1/n2
H1/H2=(n1/n2)2
P1/P2=(n1/n2)3
可见流量Q和电机的转速n是成正比关系的,而所需的轴功率P与转速的三次方成正比关系。如果泵的效率一定,当要求调节流量下降时,转速n可成比例的下降,而此时轴输出功率P成立方关系下降。即该泵电机的耗电功率与转速近似成三次方成正比的关系。
2方案设计
现有一台160KW开工循环泵,为工频直接启动,采用M300电动机综合保护器实现过电流,速断,堵转等保护。
2.1改造方案的设计要求
(1)改造后开工循环泵应满足工艺要求;
(2)改造后,开工循环泵可以实现工频运行和变频运行,两种运行方式要有各自的保护、控制、测量回路;在变频运行模式下,可以实现后台调速。
(3)正常情况下使用变频回路,当变频器发生故障时,应能迅速切除变频回路,并迅速启动工频回路。
(4)改造后,在工频运行方式和变频运行方式下都能实现后台监视、后台控制等功能
(5)工频运行方式和变频运行方式之间要有安全连锁
2.2改造方案设计
根据原有电路特点选择相应容量的设备。变频器选用ABB公司ACS800变频器,功率与电动机相同。主回路系统图如图1所示
变频系统和工频系统的电源进线相互独立,通过在变频回路和工频回路加装的接触器KM1和KM2,以实现变频和工频的隔离和切换。在正常情况下,转换开关打在变频位置,接触器KM1闭合,KM2断开,通过现场变频回路启动按钮(或后台DCS启动)实现电机变频运行;当变频器故障时,将转换开关切至工频位置,接触器KM1断开,通过现场工频启动按钮(或后台DCS启动)实现电机在工频方式下运行。接触器KM1和KM2通过辅助触点实现电气互锁,保证接触器KM1和KM2线圈不能同时吸和,保障系统的安全性。
在变频运行方式下,可以通过DCS系统对电机的转速进行调节。DCS系统根据流量设定值和反馈值自动调节开工循环泵电动机转速,实现闭环控制;当反馈系统出现问题时,变频器又可根据预设定的转速拖动电动机,实施开环控制,仍可保证系统正常运行。另外,将电动机运行信号、电机综合保护器故障输出信号、变频器故障信号、电动机电流、电动机转速等信号引入DCS系统,控制室值班人员能实时监控设备运行状况,发现问题能及时处理。
此外,开工泵原有的保护系统全部保留,并加入变频器的保护功能,设备发生故障是能及时停机。变频回路和工频回路的控制电源要分开,保证检修任意一台设备时,控制回路不带电,保证检修人员安全。
3节能效果分析
系统改造后,实际的节电效果与负荷变化、泵体运行状态等因素都有很大的关系。我们根据如下检测数据进行计算:开工循环泵电机功率160KW,在工频运行方式下,电机运行电流为278A,电压为380V,功率因数为0.83,在变频运行方式下,变频器输出频率为45.7Hz,功率因数为0.9。
挡板开度调节时的电机实际有功功率为:
P1=1.732UIcosφ=1.732×380×278×0.83=151.8KW
当变频调速时,根据泵类平方转矩负载关系式:P=P0(n/n0)3计算,
变频调速时电机实际有功功率为:
P2=P0(n/n0)3=160×(45.7/50)3=122.2KW
变频器改造后的节电率为:η=(P1-P2)/P1=19.5%
4结束语
本文采用了变频器对开工循环泵进行节能造,采用安全连锁,DCS控制等技术手段来实现。变频改造后不但节能效果明显,功率因数由0.83提高到0.9左右,而且优化了控制方案,提高了系统的自动化程度,控制效果良好。同时,电机实现了软启动,启动电流小于电机的额定电流,减少了启动电流对电网的冲击和设备损耗,延长了电机和泵的使用寿命,减少了设备维护量,有较好的经济效益。
参考文献:
循环泵篇4
【关键词】变频循环水泵节能
中图分类号:U464.138+.1文献标识码:A文章编号:
今天,中国已经步入一个新的历史发展阶段,高能耗、高污染的粗放型增长方式日益面临挑战,以提高能源等生产要素利用效率为核心的集约型增长方式和低能耗、低污染、低排放的低碳经济,已成为中国未来经济发展的方向。低碳节能的大趋势对中国传统高能耗产业影响最为直接,如何大幅降低能耗、节约能源,已成为传统行业和高能耗企业共同面临的迫切问题。
循环水泵在热力行业中使用较多,是集中供暖用电能耗中的主要设备,变频技术在循环水泵中的应用能大幅度降低电耗,这项技术已应用于各种节能设备中,其节电效果非常明显。本文将以不同参数的两台变频循环水泵作为实验设备,在同一工况下按实验设计的要求采集数据,分析并得出结果,作为更好、更节能的使用变频循环水泵的依据。
1实验设计
本实验中使用两台不同参数的变频循环水泵,共同接入同一管网中,管网为密闭式,管网定压为0.4MPa,两循环泵分别在同一正常运行条件下调节频率,通过实验仪表记录不同频率下循环水泵的流量、功率,做出实验曲线,拟合频率与流量、功率之间的函数方程,总结实验结果。
2实验设备参数
2.11#变频循环水泵参数:
流量:50m³/h扬程:32m转速:2900r/min配套功率:7.5kW
2.22#变频循环水泵参数:
流量:80m³/h扬程:32m转速:1450r/min配套功率:11kW
3实验数据
3.11#变频循环水泵实验数据:
表一:
3.22#变频循环水泵实验数据:
表二:
4绘制实验曲线
4.11#变频循环水泵实验曲线
图一图二
2#变频循环水泵实验曲线
图三图四
5拟合曲线方程,检验数据的准确度
5.11#变频循环水泵频率与流量拟合曲线方程
将频率作为自变量x,流量作为因变量y,根据图一所示曲线,拟合该曲线方程为:
y=-2.629+1.374*x
通过回归分析软件检验方程的拟合度:t检验法呈高效显著,方程有很好的拟合度,说明1#变频循环水泵频率与流量为线性方程,线性拟合较好。
5.22#变频循环水泵频率与流量拟合曲线方程
将频率作为自变量x,流量作为因变量y,根据图二所示曲线,拟合该曲线方程为:
y=-5+1.6*x
通过回归分析软件检验方程的拟合度:t检验法呈高效显著,方程有很好的拟合度,说明2#变频循环水泵频率与流量为线性方程,线性拟合较好。
5.31#变频循环水泵频率与功率拟合曲线方程
将频率作为自变量x,功率作为因变量y,根据图三所示曲线,拟合该曲线方程为:
y=0.022*x-0.001*x2+0.00008093x3
通过回归分析软件检验方程的拟合度:t检验法呈高效显著,方程有很好的拟合度,说明1#变频循环水泵频率与功率为曲线方程,曲性拟合较好。
5.42#变频循环水泵频率与流量拟合曲线方程
1#变频循环水泵频率与功率拟合曲线方程
将频率作为自变量x,功率作为因变量y,根据图四所示曲线,拟合该曲线方程为:
y=0.944-0.126*x+0.006*x2
通过回归分析软件检验方程的拟合度:t检验法呈高效显著,方程有很好的拟合度,说明2#变频循环水泵频率与功率为曲线方程,曲性拟合较好。
6实验结论
6.1通过所得流量方程计算,当频率给定为40Hz时,1#变频循环水泵流量为52m³/h,已达到额定流量,2#变频循环水泵流量为59m³/h,达到额定流量的74%,故在使用条件容许的情况下,优先选用额定转速较高的水泵,可提高使用效率。
6.2通过所得功率方程计算,当频率给定为40Hz时,1#变频循环水泵功率为4.46kW,为额定功率的60%,2#变频循环水泵功率为5.5kW,达到额定流量的50%,故在选用水泵时,优先考虑不超过40Hz时满足使用要求。
6.3根据以上流量与功率方程,在使用流量为50m³/h时,1#变频循环水泵功率为4.46kW,2#变频循环水泵功率为3.94kW,可见2#循环泵比1#循环泵少消耗功率0.52kW,但2#循环泵及配置比1#循环泵配置高、价格高,须考虑成本优势,根据实际情况选用。
变频循环水泵的合理使用可节约40%—50%的电能,这项技术已大量被生产企业所使用,电量消耗成本大幅降低,并且大大延长了水泵的使用寿命,但变频器的维护保养和安全稳定性要作为主要检查项目,使生产安全、环保、节能。
参考文献:
[1]徐奇.变频技术在集中供热系统节能运行中的应用研究.北京建筑工程学院.硕士学位论文.2006年12月
Theuseofenergy-savingvariablefrequencycirculatingpump
UrumqiHuayuanHeatingPowerCo.LtdLiXinming
[Abstract]inthispaper,throughtheexperimentalanalysisoftheenergysavingeffectofthefrequencyofcirculatingwaterpumpinuse,canusesomebettermethodsintheoperationoftheenergysaving.
[keyword]frequencyconversionwatercirculatingpumpenergy-saving
循环泵篇5
在水泵出水口有一个很小的铜的螺纹阀就是循环水泵的排气阀。
在采暖系统或空调水系统的闭合环路内,循环水泵不是将水提升到高处。而是使水在系统内周而复始地循环,克服环路的阻力损失,与建筑物的高度无直接关系,因此将它称为循环水泵。
循环水泵的容量很大,进出水管的截门也很大。有中心水泵房能循环水泵,在起动后要与其他已在运行的水泵并列,故可以将水泵进出水门开足,作带负荷起动。
但在水泵停用期间要有严密的逆止门,方可将进出水门经常开足。司泵值班工应注意水泵是否有倒蒋税象,如发现倒转,就表示逆止们严重漏水,应将出水门关闭。
(来源:文章屋网)
写人作文范文(整理27篇)
- 阅7写人作文篇1我有一个姐姐,她很漂亮,有着一头又长又黑的头发,水汪汪的大眼睛像黑宝石一样,一个樱桃般的小嘴。但你可别看她漂亮,她可是很花痴的。一次,我拿着一位明星的照片给姐姐.....
春节范文三年级作文(整理6篇)
- 阅6春节范文三年级作文篇1除夕的前几天,我很盼望过年,恨不得一头栽进被子里美美地睡到除夕的早上。除夕终于到了,我和姥姥早上出去挂彩灯。我家的彩灯真美丽:有喜庆的大红灯笼;有能.....
关于学校安全工作落实情况范文
- 阅5关于学校安全工作落实情况范文安全工作是学校一切工作的基础和前提,今年以来,党中央、国务院采取了一系列重大措施,不断加强校园安全工作。我县教育系统在上级部门的大力支持下.....
关于乡林改工作自查报告范文
- 阅7关于乡林改工作自查报告范文为了认真贯彻执行《关于深化林业产权制度改革的意见》和省林改领导小组印发的《x省林业产权制度改革试点实施方案》,在市委、市政府、区委、区政.....
公路工程论文(收集5篇)
阅:0公路工程论文篇1关键词:公路工程施工招投标造价管理一、什么是工程造价管理是运用科学、技术原理和方法,在统....
循环泵(收集5篇)
阅:0循环泵篇1关键词:再循环门;汽蚀中图分类号:TK233.52文献标识码:A文章编号:1674-7712(2013)22-0000-02火力发电厂做....
循环经济(收集5篇)
阅:0循环经济篇11.循环经济发展预警指标体系的构建其一,客观全面的原则。因为循环经济发展预警指标体系是预警模....
