数学数学论文(收集5篇)

来源:

数学数学论文篇1

1.1文理科学生数学基础不同

高中文、理科学生所学数学的内容不同,对每个知识点的要求也不尽相同.文科学生往往对数学缺少兴趣,信心不足,同时教师对文科生数学要求一般不高,这些因素使得文科学生在高中时数学基础普遍较薄.理科学生选择理科一般是出于对数学的喜爱,喜欢主动研究数学问题,学习内容全面完整,逻辑思维敏捷,解决问题方法多样,基础远比文科学生扎实.

1.2文理科学生思维方式不同

文、理科学生在数学思维方式上有较大差异.教学过程结束后,理科学生会积极主动地对知识点进行概括总结,及时提炼其中的信息;而文科学生积极性较差,并且总结信息往往不完整.不仅如此,文科学生的逻辑推理能力也较理科学生差,他们往往根据直觉进行推理,而理科学生更擅长寻找依据.在提出数学问题,探求数学结论,探索解题途径,寻找解题规律等方面,理科学生也都明显好于文科学生.

1.3对教师教学方法适应程度不同

在高中数学教学中,教师对知识讲授详细,方法归纳完整,利用大量的精力“题海战术”培养学生的技能技巧.而在高等数学教学中,由于知识点较多但课时有限,教师更注重概念和原理的掌握,对思想方法的深刻理解.理科学生在高中经过系统的数学学习使得他们较容易适应大学高等数学的教学模式和教学方法.

2提高文理兼收专业高等数学教学质量的方法

2.1合理选用教材

教师传授知识的目的是培养学生的抽象思维和分析问题、解决问题的能力,目前许多高校的高等数学教材带有随意性,教材内容针对性不强.选用教材时不必一味的追求全校统一,特别是文理兼收专业,可以根据学生的实际情况选定教材,使他们容易接受和理解,提高他们学习的自信心.选定合适教材后,当然也需要合理安排教学内容.

2.2分层教学,分层辅导

分层教学就是教师根据学生现有的知识、能力水平和潜力倾向把学生科学地分成几组各自水平相近的群体并区别对待,这些群体在教师恰当的分层策略和相互作用中得到最好的发展和提高.可将学生分为基础好、基础一般和基础差三个层次,在备课、讲课和练习等方面实行分层教学,一个班级,三种要求.在教学时,向不同层次的学生提出不同的问题,在练习时,不同层次的学生提不同的要求.对于基础较差学习有困难的学生,可以布置基础类作业,这类作业份量要少,难度偏低,便于模仿,通过练习使这类学生也有成就感;对于学习一般的学生,可以布置中等难度的作业,作业内容可以是基础知识和基本技能的训练,通过一定量的训练,提高这类学生的学习能力;对于基础好的学生,可以布置难度较高的作业,这类作业应具有创新性,且综合性比前两种层次学生的作业要高,而且要求学生寻找多种解题方法,这样可以培养基础较好学生的认知能力和创新能力,当然这种方法对教师的教学水平提出了更高的要求.

2.3多种方式并用提高学生积极性

数学数学论文篇2

1.提升高中生辩证思维能力

在数学教学中,传授知识只是其中的一部分,更需要教师注重的是使学生能够独立思考,培养学生发现问题、解决问题的能力,从而使其数学能力得到发展.例如,在概念教学过程中,教师应首先将产生概念的背景介绍给学生,努力营造一个需要形成概念的情境,学生就可以自己将某类事物的本质属性完整地概括出来,并通过恰当的词语来进行表述.

2.对学生的人格成长有所启发

在数学史中,任何一项伟大的成就都需要付出艰苦卓绝的努力.例如,南北朝时期著名的数学家祖冲之,利用刘徽割圆术,将圆周率精确计算到第七位有效数字.数学家这种刻苦钻研、持之以恒的精神能够对学生的人格成长大有启发,能够引导学生树立学习数学的自信心,对待挫折坚忍不拔,对待困难迎难而上,不畏挫折,不惧失败.

3.有利于训练学生的逻辑思维

中国的教育制度一直处在不断的改革完善中,对人才的培养也是越来越全面、越来越严格.目前而言,“应试教育已经明显存在缺陷.素质高能力强的人明显是被需要的,这时学会如何学习显得尤为重要.“数学是思维的体操.也许说思维是不可碰触的、无形的,但是一旦形成就是一种能力,它不会戛然而止,它是一种会伴随我们一生的素质.

二、数学文化在高中数学教学中的渗透策略

1.讲述数学史,展现数学文化的科学价值

在课堂教学过程中,教师可以讲述数学成就在人类发展史中的巨大作用、数学家探求真理坚持不懈的精神、思想方法的应用、知识产生的历史背景等内容,从而使得学生能够感受到数学大厦建造伟大而精彩的历程.例如,在讲解完“合数与“素数的知识之后,教师可以对“哥德巴赫猜想进行介绍.除此之外,教师应合理地划分课堂教学时间,适当地减少考试以及机械的解题练习,而腾出一定的时间用于讲解数学史.例如,在讲解“圆柱体积计算公式的时候,教师可以先介绍曹冲称象的典故,激发学生学习兴趣,引导学生积极思考.

2.欣赏数学美,展现数学文化的美学价值

数学美是一种抽象的美,能够体现数学文化,使人感受到数学的魅力.数学的美是含蓄的、内在的、理性的,并且无处不在.在很多美好的事物背后都会隐藏着一些数学的奥秘.在高中数学教学过程中,教师可以充分利用数学公式、数学逻辑、数学符号、数学图形等的简洁美、统一美、奇艺美、对称美来陶冶学生情操,发挥数学的美育功能.例如,和谐统一美可以在相似三角形中体现出来.相似三角形,不论其大小,都被看作同一类几何图形.简洁美则在命题表述与论证、数学符号、数学逻辑体系中均有所体现.发挥数学的美学价值不仅仅是将其展现给学生,更重要的是使得学生能够发现数学美、欣赏数学、热爱数学.高中数学教师也应提升自身美学修养,引导学生利用数学美陶冶情操,从而达到数学的文化教育的目的.

3.在问题情景中渗透数学文化

在学习数学的时候,我们常常被枯燥而又复杂难懂的公式弄得苦不堪言.若是能在教学的时候从历史的角度介绍数学公式产生的背景,或从现实的角度阐述数学知识的现实经济意义,或是用图形等数学知识进行推导,这样可以化抽象为形象,使知识点变得通俗易懂,做到事半功倍.好比圆周率π,一个出现于公元前950年的数字,自有记载而来就引起了国内外的关注.我们现在知道的π的值已经是非常精确的估计值,但它的发展历程是非常坎坷的,从古至今,从国内到海外,从珠算到计算机,一代又一代的数学家为了最大限度地求其估计值而努力,即使如此,数学家探索的步伐还在继续.

4.在课外活动中渗透数学文化

数学学习的环境是广阔的,它不该局限于课堂.数学的学习方式也是灵活的,它不该局限于做题.老师们可以通过组织竞赛、演讲等形式调动学生们学习的主动性,学生们亦可在查阅、收集、整理资料的过程中丰富课余生活,同时巩固课堂上学到的知识.

5.在研究下学习中渗透数学文化

现在社会越来越主张和提倡独立和创新,鼓励人们大胆地质疑和探究.研究性学习是一种非常重要的学习方式,它虽然出现得比较晚,但它的开放性、创造性等独有的特性引起了广泛的关注,尤其受广大师生的欢迎,他们常借此方式来渗透数学文化.经过对研究性学习的研究,教会学生们发现问题、解决问题,将所思所想化为实际行动.这是一次学习知识的过程,也是自我增值的过程.

三、总结

数学数学论文篇3

一、让“生活”走进课堂,加强学习材料的实用性

我们首先要搞清一个问题,就是学生为什么要来到课堂上学习数学?这个问题似乎浅显,却值得我们思考。小孩子学习数学无非是为了用,为了能解决实际生活中的具体问题,为了长大后能在社会上生存。因此,我们的数学不能远离生活,不能脱离现实。本毕业论文由整理提供这也是当前教改的一大精髓,这就要求我们在备每一节课前都要想到这些知识与哪些实际例子有联系,生活中哪些地方使用它。尽量做到能在实际情境中融入数学知识的,就不干巴巴地讲;有学生熟知的喜闻乐见的例子,就替代枯燥的例题;能动手操作发现学习的,就不灌输,不包办代替;有模仿再现实际应用的练习,就引进课堂,与书本练习题配合使用,总之,“从生活中来,到生活中去”。例如:在教北师大教材一年级下册《100以内的连减》时,我创设了这样一个情境:一上课,我就抱着全班同学的练习册进了课堂,举行了一个颁奖仪式:先让练习册得“优”的12名女生到讲台上站成一排,每人发一朵小红花,又让练习册得“优”的10名男生到讲台上站在第二排,每人发一面小红旗,并让全班同学鼓掌向他们表示祝贺。然后问:同学们,你们知道还有多少名同学的练习册没有得“优”吗?你是怎么知道的?能说说你的想法吗?你认为应该怎样计算?这个内容实际上就是本节课所要教学的例题,只是我把它换成了学生熟悉的情境,他们就能很自然的找到两种解法,可以从总人数里去掉12,再去掉10,也就是连减。也可以先想想两次一共有多少名同学站到了讲台上领奖,再从总人数里一起去掉。学生自己列式,自己解释。这样不但让学生比较形象、直观地理解了连减的意义,牢固掌握了连减的计算方法,而且表扬了作业优秀的同学,激励其他同学向他们学习,养成良好的作业习惯。

二、把学习数学变成具体的感受和体验

小学数学是数学教育的基础,是孩子们一生中学习数学的开始。如何在孩子们面前展示出一个五彩缤纷的数学世界,把抽象、枯燥的数学变得生动有趣,让孩子们发自内心的爱数学,主动地用数学。我认为关键是要加强数学与生活的联系,把抽象陌生的数学变成具体的感受和体验,让数学知识生活化。现代儿童心理学研究表明,儿童学习数学时,他们的心智活动离不开具体事物的支持。而且小学生的学习带有浓厚的感彩,对熟悉的生活情景,感到亲切,有兴趣。只有当数学不再板起面孔,而是与孩子们的生活实际更贴近的时候,他们才会产生学习的兴趣,才会进入学习的角色,才会真正感受和体验数学的魅力与价值,增进理解和应用的信心。在教学中,要注意从学生熟悉的生活原型入手,唤起他们已有的生活经验和感受,使学习成为学生发自内心的需求。例如:在教学北师大教材一年级上册《比高矮》这部分内容时,我是这样导入的:课前教师故意把黑板擦放在黑板上方的边框上,一上课教师故作惊奇的说:“咦,黑板擦怎么跑那么高,谁愿意帮我把它拿下来?”上来拿的学生由于个子矮,够不着,他就跳起来很吃力地够着拿,还是够不着。老师微笑着说:“还是让我来拿吧。”老师动手拿下了黑板擦。并问:“同学们,刚才为什么他很费力也拿不到,而我这么容易就成功了呢?”学生纷纷发言:因为老师个子高,学生个子矮;说老师个子比他高,他比老师个子矮;老师你都长到黑板那儿了,所以一下子就够着了……。老师根据学生的发言,马上叫刚才拿黑板擦的那位学生上来站在老师身边,再次比高矮,并引导学生用完整的语言表达。教师总结:看来在生活中,我们经常需要知道谁比较高,谁比较矮,才能根据不同的情况来处理问题,今天这节课我们就一起来学习比高矮。

这样的导入设计很新颖,体现了新理念、新教法,让学生在一片欢笑声中理解了比较高矮的重要性。在具体感受和体验中感受到了学习的快乐,激发了学习的兴趣和情感。

三、创造性地使用情景图,模拟实际情境,增加实际体验

翻开数学新教材,映入眼帘的是五颜六色的图画,生动有趣的故事,憨态可拘的动物,深受欢迎的卡通,这不仅仅给枯燥的数学赋予了生命,更为我们教师的教学设计提供了丰富的资源。教材为我们小学数学教育者提供了这样许许多多的情景图。实质上是编者把他对人生的理解、对现实的看法,转化到书本上以图的形式来展示,并不是要广大教师局限在图中,必须看图、用图、讲图。我在实际教学中感到,教师学生拿着实物走进教室,动口、动手创设一个个比较真实的情境,让学生看得见、摸得着,学生能更快的进入学习角色,能产生更大的学习兴趣,能有更具体的感受和体验。我经常根据书上的图找来实物、图片、自做动物头饰、编写童话故事等,领着学生动手、动口,模拟表演来亲自创设情境,使数学知识更具生活性和趣味性,效果很好。例如:在教学北师大教材一年级下册24页《100以内的加减法》时,我利用了书上青蛙吃害虫的情境图。让两个同学戴上青蛙头饰扮演青蛙吃害虫,其中一个又高又胖的男同学扮演大青蛙,一个又瘦又小的同学扮演小青蛙,让他们走上讲台,张大嘴,做着吃害虫的动作,然后他们碰面了开始对话:大青蛙说:“你今天的收获怎样?”小青蛙说:“今天我吃了30只害虫。你呢?”大青蛙自豪地说:“比你的多多了,我吃了56只害虫。”这时让下面的同学提出一些数学问题:两只青蛙一共吃了多少只害虫?大青蛙比小青蛙多吃多少只害虫?……然后由学生列出算式,并在计数器上展示计算的过程。同时,老师利用学生的表演,渗透环保和爱护动物的教育,使学生在具体情境中既学习新知,又实际感受到了数学的魅力与价值。

四、创设民主、和喈的师生关系,让学生乐于交流

新的数学课程标准,给我们提出了新的要求。要适应新的形势发展,必须有新的教育观念。首先,对学生重新认识,每一个孩子都有自己的爱好,充分估计每个孩子的潜在能力,不要认为某某孩子太差。外国从不分好坏孩子,认为每个孩子都是好孩子。要信任理解孩子,要让每个孩子都抬起头来,都体体面面的坐下去,千万不能让孩子在群体面前暴露自己无能。其次,要用和蔼的目光面对全班的学生,经常用语言和学生交流,如:“我很荣幸,我的想法和某某同学不谋而合。”“你的某某看法很有创意”“你对这一点的看法很独特。”对于不完全正确的答案,我注意发现它的闪光点:“我听懂了你的意思”。“你说的这一点有道理。”“你能解释一下吗?”以前每节课结束,我都说:“有不懂的找老师。”现在我常说的是:“你有什么体会或遗憾?”“今天的课,谁还想发表看法?”这样就能体现出老师和学生平等、民主、和谐。同时,还要注意学生的质量,应从不同的角度下结论,从能力的培养入手,使学生的特长得以充分的发挥。超级秘书网

“为了每一位学生的发展”是新课程的核心理念。为了实现这一理念,教师必须尊重发育迟缓的学生;尊重学业成绩不良的学生;尊重有过错的学生;尊重有严重缺点和缺陷的学生;尊重和自己意见不致的学生。尊重学生同时意味着不伤害学生的自尊心,做到不体罚学生;不辱骂学生;不大声训斥学生;不冷落学生;不羞辱、嘲笑学生;不随意当众批评学生。

数学数学论文篇4

[关键词]游戏化教学小学数学教学策略

游戏化教学在小学数学教学中具有非常重要的作用和价值。在小学数学课堂教学中渗透游戏活动,可以有效活跃课堂氛围,开发学生的智力,激发起学生的求知欲望,建立有效的教学秩序。随着教育改革的开启,新课标标准把基础教育阶段游戏化教学作为教育目标,优化了教学环境,推动了游戏化教学策略的发展进程。

一、在游戏导学中改进教学方法

在传统的数学教学模式下,教师一般会以用温习旧知识的方式导入新课,若知识间的跨度和差异性较大,小学生理解起来就会比较困难,甚至陷入被动的学习状态中。若是通过构建有效的游戏化教学策略,利用预习导课的方法,就会使学生快速进入新课知识的学习,从而提高教学效率。例如:在学习《位置与方向》这一课的过程中,教师要设置一个有关方向的游戏,学习在主动进行方向的探索和选择过程中,开启游戏闯关过程。实践证明,这样的游戏导学,不仅发挥了小学生活泼爱动的天性和特质,把数学知识融入游戏氛围中,还更能发挥游戏的教学价值,同时,也为教师摒弃传统的教学方法,进行教学方法创新做出了储备。

二、在游戏竞争合作中激发学习兴趣

小学游戏化教学模式因其自身所蕴含的趣味性、科学性、创新性、开发性等特征,在教学过程中对于激发课程与教学Kechengyujiaoxue学生的学习兴趣有着非常重要的作用。在游戏化教学的应用过程中,可以以小组的形式进行竞赛,这些游戏过程无论是竞争还是合作的关系,都可以优化教学内容,增进学生的学习兴趣。例如:小学数学《整数加减运算定律推广到小数》这一课的教学,教师可以因地制宜,发挥游戏的特征,以游戏《攻城占地》开启活动模式,将加减运算规律和游戏竞赛融汇起来。如这样的游戏场景:魔王与魔仙所发动的战争,在这个游戏中攻城池为主要任务,在这个过程中设置了重重障碍,因此魔王与魔仙必须通过破解迷魂阵才可以取得胜利。这个游戏环节调动了小学生的好动和爱思考的特质,学生积极参与其中,学生在潜移默化中提升了计算能力,获取了更多的数学知识,同时意识到数学知识的实践性、实用性的价值,以后会产生更加明确的学习动机,在游戏的合作竞争等多种模式中全方位地发展自己的兴趣,彰显自己卓越的数学能力。

三、在因材施教中促进个体的发展

教育的全面发展是建立在每个个体的全面发展的基础之上的,而个体的全面发展应该作为现代数学教育的总体目标。游戏化教学的优势在于以教学目标为指引,按照学科知识的难易程度划分游戏等级和范围,这种游戏模式迎合了学生的个体发展,满足了不同学生的教育需求,有利于因材施教原则的顺利实施。例如:在讲授小学数学《组合图形面积计算》这一课的时候,教师以游戏《星空的奥秘》导入,在这个过程中学生可以通过观察,从而算出星空中组合图形的面积。这款游戏让学生在色彩斑斓、浩瀚无穷的星空轴观察维度上进行探索,根据星空所呈现的诸多形状特征,计算出图形的面积。生动的游戏氛围会激发学生的探究欲望,也有利于教师发挥因材施教的教学原则。同时,这种循序渐进的游戏模式可以有效划分出数学知识应用的难易程度,可以满足不同学生的学习需求,因此在教学过程中更受欢迎,为小学数学教学因材施教原则提升提供了现实典范,更有利于学生个体的发展。

数学数学论文篇5

1.文艺复兴时期的数学与艺术———合作巅峰

经过了漫长的中世纪,欧洲于13世纪末进入了文艺复兴时期,艺术在人文主义和科学思想的双重影响下蓬勃发展。为达到真实反映现实的目的,画家们面临着一个急待解决的数学问题———如何把三维的现实世界描绘在二维画布上?1435年,意大利画家、建筑学家、数学家、文学家阿尔伯蒂出版了《绘画论》一书,对基于透视几何学的焦点透视画法进行了科学的系统化。他认为大自然是艺术创作的源泉,数学是认识自然的钥匙,艺术的美就是和自然相符合。意大利画家、科学家达•芬奇用艺术家的眼光去观察自然,用科学家的精神去探索自然,深邃的哲理和严密的逻辑使他在艺术和科学上都达到了顶峰。达•芬奇在线透视与色透视的基础上,创立了透视学的第三个分支———空气透视;同时他还创作了许多精美绝伦的透视学作品,其中最优秀的当属《最后的晚餐》。透视几何学的诞生和应用,使得数学和艺术的融合达到了一个里程碑式的高度。波兰数学家、天文学家、法学家、医生、牧师哥白尼经过长年的观察和计算,在1543年发表的《天体运行论》中提出了“日心说”,沉重打击了教会的宇宙观。近100年后意大利物理学家、天文学家伽利略以《星际使者》《关于太阳黑子的书信》等著作有力地支持了哥白尼的“日心说”,奠定了近代实验科学的基础。哥白尼和伽利略两人的研究成果逐渐瓦解了传统上神学、科学、哲学之间的统一关系,为近代自然科学的发展铺平了道路。

2.近代思想启蒙运动中的数学和艺术———渐行渐远

发端于17世纪中叶的思想启蒙运动揭开了欧洲近代史的序幕,启蒙思想家们力求探索推动人类社会不断前进的永恒法则。1665年,英国数学家、物理学家、天文学家、哲学家牛顿,德国数学家、历史学家、法学家、哲学家莱布尼兹各自独立地创立了具有划时代意义的“微积分学”,彻底改变了数学概念绝大多数来源于直观的经验模型的面貌,开始更多地依赖于思维的构造。微积分学随即成为现代物理学、化学、天文学、生物学和地理学等众多自然科学和工程技术的基础理论方法,而且还广泛应用于经济、管理、语言、政治、艺术设计等人文社会科学领域。在微积分的基础上建立起来的点集拓扑学与泛函分析等各个现代数学分支日趋逻辑化和抽象化,也远远走在了所有现代数学应用领域的前列。1750年德国美学家、哲学家鲍姆嘉通出版了一本学术专著《美学》,宣告了美学已确立为一门独立学科。他将美学定义为“感性认识的科学”,认为“科学研究的初衷是追求真,而艺术研究的目的是创造美”。与之同时代的德国哲学家、思想家黑格尔在其1817年出版的《哲学全书》中宣称,“艺术的内容就是人们内心的理念,艺术的形式就是诉诸感官的形象”。至此,人们对于数学和艺术更多的是强调它们之间的差异:数学作为自然科学的基础,主要遵循逻辑思维的原则,达到了理性认识的巅峰;而艺术作为人文精神的代表,主要运用形象思维的方式,达到了感性体验的极致。在鲍姆嘉通和黑格尔的指引下,艺术与现代数学都孤单地迈上了相对独立的发展道路

3.近现代社会中数学与艺术的重新融合之路

进入20世纪,人类历史翻开了崭新的一页,人们的生活状态和思维方式也发生了深刻的变革。1945年美籍奥地利人、生物学家贝塔朗菲发表了《关于一般系统论》的论文,从此人们开始以整体性的观点来分析系统、要素和环境三者之间的互动联系和变化规律,科学与艺术的基本原理、工作对象、研究方法等各个方面都重新开始互相渗透和融合。就像英国学者马丁•约翰逊在《艺术与科学思维》一书中所指出的那样,“科学家与艺术家,他们虽然岗位不同,但在各自工作中所追求的目标是相通的,他们实际所采用的工作方法比他们实际所承认的有着更多的相同之处”。根据思想倾向和艺术风格的不同,20世纪以来西方现代艺术史上形成了各种各样的艺术流派。西班牙画家、雕塑家、剧作家、诗人毕加索的名作《亚威农少女》,引发了立体主义运动的兴起。立体派比较关注如何运用几何原理和数学概念来革新传统的艺术形式,表现生活在迅猛变化的工业社会里的人们内心的期待、躁动、彷徨与失落。而抽象派则尝试打破绘画必须模仿自然的艺术观念,主张以抽象的几何图形为绘画的基本元素,来构造普遍的现象秩序与均衡美感。抽象派的先驱、荷兰画家蒙德里安的代表作品《灰色的树》,通过直线与直角的“纯粹造型”达到了人神统一的“绝对境界”。说到20世纪的艺术界,必须提及荷兰的埃舍尔,他是如此的特立独行,甚至至今都无法将他归属任何一个流派。埃舍尔一生钟情于镶嵌艺术的研究与创作,他从圆、正三角形、正方形、正六边形等基本几何图形出发,连续多次地利用欧氏几何里的反射、平移、伸缩、旋转这四种基本变换,使得基本几何图形扭曲变形为虫、鱼、鸟、兽、人物、花朵、魔鬼与天使等镶嵌图案。后来,埃舍尔从读到的非欧几何、拓扑、分形几何等数学思想中再次获得了巨大灵感,使镶嵌艺术达到了鼎盛状态。在埃舍尔创作的那些充满现代数学气息的镶嵌艺术作品中,例如《红蚁》《瀑布》《鱼和鳞》《观景楼》,我们看到了一个个神秘莫测的神话世界。如果说,非欧几何直接造就了埃舍尔辉煌的镶嵌艺术,那么分形艺术则充分展示了后现代主义的艺术风格。为了表现变幻的云朵、蜿蜒的河流、神秘的星系和粗糙的断面等自然形态,1975年数学家、计算机专家芒德勃罗出版的《分形:形状、机遇和维数》一书,宣告了分形几何的诞生。在审美情趣与科学内涵完美融合的分形图形中,厚重的思想随着时间消逝,流动的秩序在平面上涌动,主体裂成碎片丧失了中心地位,艺术通过计算机复制走向大众化。虽然分形图形具有复杂的结构,但总是可以利用简单函数无限迭代而成。这个特征使得分形广泛应用于各个艺术领域,尤其是装饰设计方面,如早期的贺卡、壁画、明信片、书籍封面,以及现在的电信卡、购物卡、文化衫、广告画面等。北京服装学院高绪珊教授率领的团队将分形理论应用于纤维制造流程,创造了多维高仿真长丝SFY,使人造纤维呈现出“龙缠柱”般的天然纤维风格。

二、教育工作者的深度反思———和谐发展

我们已经截取了西方艺术发展史上四个重要的阶段作为载体,简要地阐述了数学和艺术之间关系的来龙去脉。了解这一点,对于教育工作者有什么实际意义?美籍华裔核物理学家吴健雄曾经指出:“为了避免出现社会可持续发展中的危机,当前一个刻不容缓的问题是消除科学文化和人文文化之间的隔阂,而为加强这两方面的交流和联系,没有比大学更合适的场所了。”近20年来,教育界的有识之士反复提出这样一个问题:我国作为一个世界“大工厂”拥有庞大的工程师队伍,可是为什么国内大多数行业仍旧处于世界产业链的底端?答案是明显的,我国目前缺少真正意义上的大师级别的科学家和艺术家,既不能开发尖端的突破性的核心技术,也不能设计前卫的独创性的艺术模式。那么,为什么会出现这种令人尴尬的局面呢?现行教育体制或许应当担负起一定的责任。我国的教育注重知识灌输、忽视能力培养的教学方式姑且不论,还在高中阶段就过早地文理分科,大学阶段专业划分过细,理工科学生不用学习如何欣赏艺术,而艺术类学生也不会主动关注数学。久而久之,在知识结构、认知行为与创造能力等方面产生明显的断裂是必然的。值得欣慰的是,2014年教育部已经宣布了高中不分文理班的政策,这是朝着“理性回归”迈出的第一步。可以期待,未来大学的一二年级将不再划专业,而进行“通识教育”。如此一来,方有可能造就逻辑思维能力和形象思维能力和谐发展的人才。数学和艺术的融合,从哲学上讲,源于它们共同的追求———普遍性和永恒性,以及在数学研究和艺术创作过程中共同的付出———智慧和情感。“数学求真,艺术求美”,因为只有真和美才是普遍的和永恒的。古希腊人认为“美是真理的光辉”,美和真实际上是统一的。数学和艺术的融合其实就是“艺术的数学化”和“数学的艺术化”。对于艺术的数学化,大家其实并不陌生。且不说生活中普遍存在的“分形艺术”,美国商业电影《阿凡达》开启了一个广泛意义上的“计算机艺术”的新时代。从键盘输入设计巧妙的数学算法,线条、色彩、形态、结构等艺术元素连续地变换与组合,具有梦幻效果的艺术作品就神奇地显示在屏幕上了。相信这会对现代艺术的创作风格、传播方式和评价体系等方面产生深刻的影响。对于数学的艺术化,可以像北京科教频道的纪录片《宇宙大探索》那样,用艺术化的浪漫方式来阐述深奥的宇宙演化理论。在“高等数学”课程的教学过程中,也要尽量把抽象的数学概念和深刻的数学思想进行艺术化的处理,让课堂始终充满着幽默风趣的气氛,激发学生的好奇心和共鸣感。一方面拿一些经典艺术素材来表述,发挥艺术作品形象直观的优势,加强理解的深度和广度。比如在讲授极限理论时,不妨利用俄罗斯套娃来演示无穷数列的变化趋势,然后借用宋代叶绍翁的诗句“满园春色关不住,一枝红杏出墙来”来解释无穷与无界的区别。比如在讲授透视几何时,可以播放一段我国的传统艺术皮影戏来引起学生对于透视原理的兴趣,然后引导学生从数学的角度来欣赏达•芬奇的《最后的晚餐》。再比如讲到傅里叶级数时,先通过计算机播放一段舒缓的贝多芬的《田园交响曲》,让学生观察MediaPlayer上显示的声波的简谐振动,然后让学生课后查阅毕达哥拉斯用数学方法研究音程和音律之间关系后建立的音乐理论。另一方面,要充分挖掘高等数学本身蕴涵的五大审美因素———简洁之美、对称之美、统一之美、奇异之美和运动之美。数学之美是一种通过赏心悦目的数学结构呈现的人类思维方式,是一种超越视听感觉的“抽象美”。要引导学生在学习数学概念、定理的过程中,发现与领略数学之美;在解答或证明数学问题的过程中,追求与创造数学之美,进而对数学产生浓厚的兴趣和强烈的感情。

三、结语

你会喜欢下面的文章?

    美丽校园的演讲稿范文(整理8篇)

    - 阅0

    美丽校园的演讲稿篇1尊敬的各位老师,亲爱的同学们:大家上午好!今天我国旗下讲话的主题是”把美丽带进校园“。走在校园里,看见地上的一片纸屑,你是视而不见,还是弯腰捡起?在食堂.....

    植树节的作文范文(整理16篇)

    - 阅0

    植树节的作文范文篇1今天是植树节,阳光灿烂,老师安排我们一起去植树,我们开开心心地拿起水桶,抗起铁铲,带上树苗地去植树了。我们兴高采烈地来到路边,我和小明一组,我挖坑,小明提水.....

    暑假周记范文范例(整理8篇)

    - 阅0

    暑假周记范文终于放假了,我先把作业,我暑期变的多彩,除了学许多活动之外,网络便成了我的忠实伙伴。每当同学谈到上网的经历,那些经常上网的同学总是兴致勃勃地侃侃而谈,我也只能.....

    高一周记范文1(整理9篇)

    - 阅0

    高一周记范文又是一个新学期了,一想到学习计划,我脑中浮现的就是“新学期”这三个字。经过了高一一年的学习,我想我对于高中的学习情况已经有了很大的适应,在这一年的学习生活.....