人工神经网络的实际应用(整理2篇)

来源:

人工神经网络的实际应用范文篇1

关键词:神经网络;BP算法;网络模型

中图分类号:TP183

1BP网络的定义

误差反向传播算法(ErrorBackPropagation,EBP,简称BP)在于利用输出层的误差来估计输出层的直接前导层的误差,再用这个误差估计更前一层的误差。如此下去,就获得了所有其他各层的误差估计。这样就形成了将输出表现出的误差沿着与输入信号传送相反的方向逐级向网络的输入端传递的过程。因此,人们就又将此算法称为向后传播算法,简称BP算法。使用BP算法进行学习的多层前向网络称为BP网络。虽然这种误差估计本身的精度会随着误差本身的“向后传播”而不断降低,但它还是给多层网络的训练提供了十分有效的办法。所以,多年来该算法受到了广泛的关注。BP网络应用广泛,学习采用最小均方差,由输入层、若干隐层和输出层构成,它是一种典型的前馈网络。

图1三层神经网络模型

常用的BP网络是三层前向网络(如图1所示),即:输入层、中间层和输出层。它的学习分为以下几个过程:由每个神经元网络的输入节点经中间层向输出层的一个正向传播,若网络的实际输出与期望输出有误差,将这个误差经输出层到中间层再传给输入层调整权值再学习的一个逆传播。通过不断的学习,最后的输出要在误差范围之内。

2BP算法的基本思想

BP算法的基本思想归结如下:BP网络对于输入信号,通过输入层传播到隐含层,经过激励函数的作用,再将隐含层的输出作为输出层的输入传播到输出层,最后输出结果。对于每一个输入样本,神经网络的实际输出与目标输出不可能完全一样,两者之间必然会有一定的误差,定义均方差为:

3BP算法的学习过程及两种改进算法的思想

学习是人工神经网络最重要的一个特点,学习的目的在于能对任何一个样本的输入通过调整相关参数输出期望的结果。学习的方法可以从以下几步阐述:第一步,向神经网络模型输入一系列样本,每一个样本都有包含输入和期待的输出两部分,把采集到的样本向神经网络输入后,先由第一个隐层进行相关计算然后逐层向下一层传递,直到传至输出层。第二步,将输出的结果与期望输出的结果做比较,如果误差不能满足要求,就按原来的路径逐层返回,神经网络的自学习能力这时候就要发挥作用了,它要根据误差的结果对权值、阀值做适当修改,再从第一个隐层开始重复的计算传递,直到输出的结果满足要求。

本文论述的算法都是以三层网络结构出发进行讨论的。

BP算法的改进主要集中在两个方面:其一是避免陷入局部极小值,一旦陷入要想办法逃出;其二是改进迭代算法,加快收敛速度,较常用的方法是共轭梯度法、Levenberg-Marquardt法等。

BP网络学习过程收敛速度慢的因素有两方面:(1)学习率s和势态因子α在训练中值不变。BP网络实际就是优化计算中的梯度下降法,利用输出的误差作为对权值、阀值调整的参考,目的是确保最终的输出误差最小。考虑到算法的收敛性,学习率s必须小于某一固定上界。BP网络中的学习率s和惯性因子α在训练过程中为一固定值。这一限制决定了BP网络的收敛速度不可能很快。(2)学习过程中出现“假饱和”。实际输出和期望输出的误差产生以后,通过调整网络训练的权值,不断学习后这种误差应该越来越小,如果多次学习后误差没有减小,经过一段时间后,误差才下降,称这种现象为学习过程中的“假饱和”。在BP网络中,初始权值、阈值一般是在一个范围内人为确定的。若作为网络输入的神经元的个数与阈值差别较大,考虑到神经元具有饱和非线性特征,那么神经元的实际输出只有两种结果:极大值或极小值。当输出层接收到的神经元的总输入进入到饱和区,且实际输出与目标输出相互矛盾,就是“假饱和”。这时对权值作大的修改才行,而实际上,由于此时导数值趋近于零,导数权值修改量很小。导致学习速度下降。对中间层的神经元也是一样。学习一旦进入“假饱和”状态,很难退出这种“假饱和”状态,可能需要一定的时间,有时可能会陷入僵局,要重新开始网络训练。

传统的BP算法主要的优点是简单、易于实现。但是BP算法有两个不可克服的缺陷:(1)BP算法很可能陷入局部极小值;(2)收敛速度慢。

像热导气体分析仪这类的仪器经常会用于一些恶劣而又危险的环境中,且要求其测量周期短暂,所以系统需要较强的抗震荡学习网络。基于热导传感器测量的主要因素,提出一种新的BP网络学习算法,对学习因子进行模糊自适应调节,这样系统能够快速、准确地将干扰因素与热导传感器的原始测量值进行拟合,有效减小测量误差。这种模糊自适应算法思想一样可用于发电机匝间短路故障的在线检测。

4结束语

通过以上对BP算法的学习与分析总结如下:(1)传统的BP算法采用最小均方差的学习方式,是使用最广泛的网络,可用于语言综合、语言识别、自适应控制等,它是一种典型的前馈网络,优点是简单、易于实现,缺点是可能陷入局部极小值、收敛速度慢。(2)BP算法的改进主要集中在两个方面:其一是避免陷入局部极小值,一旦陷入要想办法逃出;其二是改进迭代算法,加快收敛速度。(3)多层前馈神经网络学习过程中,对学习因子进行模糊自适应调节,自动调节步长、势态因子、可以明显地提高收敛速度和误差精度。在一些特殊领域的应用取得较好的效果。从目前已有的研究成果来看,设计的模糊自适应算法有良好的研究方向。

参考文献:

[1]黄丽.BP神经网络算法改进及应用研究[D].重庆师范大学图书馆,2007.

[2]刘彩红.BP神经网络学习算法的研究[D].重庆师范大学图书馆,2006.

[3]王建梅,覃文忠.基于L-M算法的BP神经网络分类器[J].武汉大学学报,2005(10):928-931.

人工神经网络的实际应用范文篇2

本文主要介绍了人工神经网络的概念,并对几种具体的神经网络进行介绍,从它们的提出时间、网络结构和适用范围几个方面来深入讲解。

【关键词】神经网络感知器网络径向基网络反馈神经网络

1引言

人工神经网络是基于对人脑组织结构、活动机制的初步认识提出的一种新型信息处理体系。它实际上是一个由大量简单元件相互连接而成的复杂网络,具有高度的非线性,能够进行复杂的逻辑操作和非线性关系实现的系统,通过模仿脑神经系统的组织结构以及某些活动机理,人工神经网络可呈现出人脑的许多特征,并具有人脑的一些基本功能,利用这一特性,可以设计处具有类似大脑某些功能的智能系统来处理各种信息,解决不同问题。下面对几种具体的神经网络进行介绍。

2感知器网络

感知器是由美国学者Rosenblatt在1957年首次提出的,感知器可谓是最早的人工神经网络。感知器具有分层结构,信息从输入层进入网络,逐层向前传递到输出层。感知器是神经网络用来进行模式识别的一种最简单模型,属于前向神经网络类型。

2.1单层感知器

单层感知器是指只有一层处理单元的感知器,它的结构与功能都非常简单,通过读网络权值的训练,可以使感知器对一组输入矢量的响应达到元素为0或1的目标输出,从而实现对输入矢量分类的目的,目前在解决实际问题时很少被采用,但由于它在神经网络研究中具有重要意义,是研究其他网络的基础,而且较易学习和理解,适合于作为学习神经网络的起点。

2.2多层感知器

多层感知器是对单层感知器的推广,它能够成功解决单层感知器所不能解决的非线性可分问题,在输入层与输出层之间引入隐层作为输入模式的“内部表示”,即可将单层感知器变成多层感知器。

3线性神经网络

线性神经网络类似于感知器,但是线性

神经网络的激活函数是线性的,而不是硬限转移函数。因此线性神经网络的输出可以使任意值,而感知器的输出不是0就是1。线性神经网络最早的典型代表就是在1963年由美国斯坦福大学教授BerhardWindrow提出的自适应线性元件网络,它是一个由输入层和输出层构成的单层前馈性网络。自适应线性神经网络的学习算法比感知器的学习算法的收敛速度和精度都有较大的提高,自适应线性神经网络主要用于函数逼近、信号预测、系统辨识、模式识别和控制等领域。

4BP神经网络

BP神经网络是1986年由以Rumelhart和McCelland为首的科学家小组提出的,是一种按误差逆传播算法训练的多层前馈网络,在人工神经网络的实际应用中,80%~90%的人工神经网络模型采用BP网络或者它的变化形式,它也是前向网络的核心部分,体现了人工神经网络最精华的部分,BP神经网络由信息的正向传播和误差的反向传播两个过程组成。输入层各神经元负责接收来自外界的输入信息,并传递给中间层各神经元;中间层是内部信息处理层,负责信息变换,根据信息变化能力的需求,中间层可以设计为单隐层或者多隐层结构;最后一个隐层传递到输出层各神经元的信息,经过一步处理后完成一次学习的正向传播处理过程,由输出层向外界输出信息处理结果。当实际输出与期望输出不符时,进入误差的反向传播阶段。误差通过输出层,按误差梯度下降的方式修正各层权值,向隐层、输入层逐层反传。周而复始的信息正向传播和误差反向传播过程,是各层权值不断调整的过程,也是神经网络学习训练过程,此过程一直进行到网络输出的误差减少到可以接受的程度,或者达到预先设定的学习次数为止。

BP网络主要应用于以下方面:

(1)函数逼近:用输入矢量和相应的输出矢量训练一个网络逼近一个函数。

(2)模式识别:用一个特定的输出矢量将它与输入矢量联系起来。

(3)分类:对输入矢量以所定义的合适方式进行分类。

(4)数据压缩:减少输出矢量维数以便于传输或存储。

5反馈神经网络

美国加州理工学院物理学家J.J.Hopfield教授于1982年发表了对神经网络发展颇具影响的论文,提出一种单层反馈神经网络,后来人们将这种反馈网络称作Hopfield网。在多输入/多输出的动态系统中,控制对象特性复杂,传统方法难以描述复杂的系统。为控制对象建立模型可以减少直接进行实验带来的负面影响,所以模型显得尤为重要。但是,前馈神经网络从结构上说属于一种静态网络,其输入、输出向量之间是简单的非线性函数映射关系。实际应用中系统过程大多是动态的,前馈神经网络辨识就暴露出明显的不足,用前馈神经网络只是非线性对应网络,无反馈记忆环节,因此,利用反馈神经网络的动态特性就可以克服前馈神经网络的缺点,使神经网络更加接近系统的实际过程。

Hopfield神经网络的应用:

(1)在数字识别方面。

(2)高校科研能力评价。

(3)应用于联想记忆的MATLAB程序。

6径向基神经网络

径向基RBF网络是一个3层的网络,除了输入、输出层之间外仅有一个隐层。隐层中的转换函数是局部响应的高斯函数,而其他前向网络,转换函数一般都是全局响应函数。由于这样的差异,要实现同样的功能,RBF需要更多的神经元,这就是RBF网络不能取代标准前向型络的原因。但是RBF网络的训练时间更短,它对函数的逼近时最优的,可以以任意精度逼近任意连续函数。隐层中的神经元越多,逼近越精确。

径向基网络的应用:

(1)用于曲线拟合的RBF网络。

(2)径向基网络实现非线性函数回归。

7自组织神经网络

自组织竞争型神经网络是一种无教师监督学习,具有自组织功能的神经网络,网络通过自身的训练。能自动对输入模式进行分类,一般由输入层和竞争层够曾。两层之间各神经元实现双向连接,而且网络没有隐含层。有时竞争层之间还存在着横向连接。

常用自组织网络有一下几种:

(1)自组织特征映射网络。

(2)学习矢量量化网络。

(3)自适应共振理论模型。

(4)对偶传播网络。

参考文献

[1]韩力群.人工神经网络教程[M].北京:北京邮电大学出版社,2006.

[2]周品.神经网络设计与应用[M].北京:清华大学出版社,2013.

作者简介

孔令文(1989-),男,黑龙江省齐齐哈尔市人。现为西南林业大学机械与交通学院在读研究生。研究方向为计算机仿真。

你会喜欢下面的文章?