卷积神经网络的方法(收集3篇)
来源:
卷积神经网络的方法范文篇1
关键词:无人机;STM32;道路检测;神经网络;模型训练
传统的道路巡检和保养主要由人工来完成,需要投入大量的人力物力来保证道路的相对安全,这种方式存在着低效率、高成本且难以保证道路的决定安全[1]。固定式交通检测设备大量设置在道路的主干路上,也存在着一些缺陷:(1)监控摄像头不能做到全覆盖且具有一定的探测盲区。(2)监控系统采用多屏幕方式,工作人员进行道路故障判断时受限。(3)不能灵活的通知有关部门对事故的快速应急处理。为了克服上述的缺点,本文设计了一种基于卷积神经网络的无人机道路巡检系统,对发生故障和需要保养的道路能快速响应,及时的通知有关部门,避免事故的发生。
1系统的总体设计
在无人机道路巡检系统中,我们主要考虑了以下几个要求[3]:(1)无人机系统能满足正常的工作;(2)无人机系统能适应各种天气和气候变化等;(3)无人机系统应充分考虑控制的安全性;(4)视频流的传输应避免较长的延时。无人机道路巡检系统主要由无人机系统设计、远程控制系统、PC端系统三大部分组成,系统的总体结构框图如图1所示。系统的具体工作原理为:无人机将道路环境检测的结果,将处理后的视频流通过远程传输的方式,发送到PC端进行实时监控道路状况。远程控制系统以STM32作为主控芯片,主要包括在无人机端和遥控端两个部分,遥控端将控制指令通过2.4G通信发送到无人机端,此时无人机的做出相应的位姿变化,完成遥控端对无人机位姿的控制。无人机系统的图像采集模块芯片为树莓派,完成图像的采集并采用TCP通信实现远程视频的传输,将获取的视频流传输到PC端。PC端上使用OpenCV对图像进行处理[4],利用深度学习模块对设计的神经网络进行数据训练,从而得到检测模型,最后在PC上接收处理过的数据并实时监测道路状况。上述工作原理可实现无人机道路巡检系统,下文将对其包括的三大模块进行说明介绍。
2无人机系统设计
本次使用的是RaspberryPi3(modelB+)作为无人机的主控制板[7],无人机的飞行控制算法和图像采集模块集成在树莓派中。远程控制系统通过2.4G无线通信模块连接,通过控制器实现对无人机飞行和图像采集的控制。无人机系统总体结构如图2所示。
3PC端系统设计
在PC端系统设计主要分为图像预处理、模型训练和视频监控三大部分,通过TCP通信协议进行通信,TCP通信是一种面向连接的通信,可完成客户端(树莓派)和服务端(PC)的信息传递[9]。下面主要对前两部分详细介绍。
3.1图像预处理
本系统对地面裂缝检测的图像预处理流程如图3所示具体工作原理为:(1)采用加权平均灰度化对获取的无人机影像进行灰度化处理;(2)对灰度化处理后的影像进行直方图均衡化,使得影像具有高对比度和多元的灰度色调变化,为后续的滤波降噪奠定基础;(3)对处理后的影像进行滤波降噪,消除孤立的噪声点,采用方法的是中值滤波降噪;(4)使用迭代二值化处理将影像的灰度值设置合适的阈值,使得图像更简单,目标更突出,然后对图像进行分割,计算迭代的阈值,判断迭代的阈值是否收敛到某一值或者达到限定的迭代次数,如果是的话,将完成二值化处理和滤波,否则将初始二值化阈值;(5)最终完成道路故障的识别与标记。
3.2模型检测
3.2.1卷积神经网络原理使用卷积神经网络进行模型训练,首先使用卷积层实现特征的提取,原理如图4所示。如图5所示,卷积操作是模仿神经元的机制。不同的输入在权重的影响下会有不同的输出,根据损失函数的计算来不断的更新权重,直到获得合理的权重参数。初始传递的信号为x,中间通过权重w,再经过偏置b后连接在末端,最后输出信号变成wx+b。fun(•)表示激活函数,最终f(z为输出的结果,如式(1)所示。3.2.2卷积神经网络训练流程通过相机采集到的缺陷和问题图像作为训练样本,这部分是检测道路安全的关键一步,(1)训练标记数据:首先使用图像预处理中标记好的道路故障提取出来,通过卷积神经网络对标记框内的目标数据进行训练;(2)提取特征数据:将道路故障的类型统计并归纳;(3)误差反馈学习:对测试样本进行误差反馈学习,并进行测试;(4)优化训练数据:根据实际应用场景增加图像的种类和数量,不断训练模型。3.2.3故障的基本分类道路故障主要路面缺陷(例如裂缝、残缺等)和路面增加(例如长时间静止的车辆和路人),各自训练集数量为1000张。如表1所示。3.2.4实验测试为实现故障的检测,测试数据集为100张,不同类型故障数据50张,均采集自新道路且与训练样本一致,实验结果如表2所示。由表2可知,检测路面增加(例如长时间静止的车辆和路人)的准确率高达96%,但是地面缺陷的准确率相比较而言略低,可能造成的原因是:①硬件原因导致采集的图像清晰度比较低;②地面缺陷太小,无人机难以识别;③训练的数据集较少,特征学习误差大;但是满足了设计需求,还需进一步改进。
4总结与展望
卷积神经网络的方法范文篇2
关键词:卷积神经网络;图像分类;空间变换;可变形卷积
DOIDOI:10.11907/rjdk.171863
中图分类号:TP317.4
文献标识码:A文章编号:1672-7800(2017)006-0198-04
0引言
图像分类一直是计算机视觉领域的一个基础而重要的核心问题,具有大量的实际应用场景和案例。很多典型的计算机视觉问题(如物体检测、图像分割)都可以演化为图像分类问题。图像分类问题有很多难点需要解决,观测角度、光照条件的变化、物体自身形变、部分遮挡、背景杂波影响、类内差异等问题都会导致被观测物体的计算机表示(二维或三维数值数组)发生剧烈变化。一个良好的图像分类模型应当对上述情况(以及不同情况的组合)不敏感。使用深度学习尤其是深度卷积神经网络,用大量图像数据进行训练后可以处理十分复杂的分类问题。
卷积神经网络是为识别二维形状而专门设计的一个多层感知器,这种网络结构对平移、缩放、倾斜等扰动具有高度不变性,并且具有强大的特征学习与抽象表达能力,可以通过网络训练获得图像特征,避免了复杂的特征提取与数据重建过程。通过网络层的堆叠,集成了低、中、高层特征表示。AlexNet等网络模型的出F,也推动了卷积网络在海量图像分类领域的蓬勃发展。
1卷积神经网络
卷积神经网络是人工神经网络的一种,其“局部感知”“权值共享”[1]等特性使之更类似于生物神经网络,网络模型复杂度大大降低,网络训练更容易,多层的网络结构有更好的抽象表达能力,可以直接将图像作为网络输入,通过网络训练自动学习图像特征,从而避免了复杂的特征提取过程。
YannLeCun等[2]设计的LeNet-5是当前广泛使用的卷积网络结构原型,它包含了卷积层、下采样层(池化层)、全连接层以及输出层,构成了现代卷积神经网络的基本组件,后续复杂的模型都离不开这些基本组件。LeNet-5对手写数字识别率较高,但在大数据量、复杂的物体图片分类方面不足,过拟合也导致其泛化能力较弱。网络训练开销大且受制于计算机性能。
2012年,在ILSVRC竞赛中AlexNet模型[3]赢得冠军,将错误率降低了10个百分点。拥有5层卷积结构的AlexNet模型证明了卷积神经网络在复杂模型下的有效性,并将GPU训练引入研究领域,使得大数据训练时间缩短,具有里程碑意义。AlexNet还有如下创新点:①采用局部响应归一化算法(LocalResponseNormalization,LRN),增强了模型的泛化能力,有效降低了分类错误率;②使用Dropout技术,降低了神经元复杂的互适应关系,有效避免了过拟合;③为了获得更快的收敛速度,AlexNet使用非线性激活函数ReLU(RectifiedLinearUnits)来代替传统的Sigmoid激活函数。
Karen等[4]在AlexNet的基础上使用更小尺寸的卷积核级联替代大卷积核,提出了VGG网络。虽然VGG网络层数和参数都比AlexNet多,但得益于更深的网络和较小的卷积核尺寸,使之具有隐式规则作用,只需很少的迭代次数就能达到收敛目的。
复杂的网络结构能表达更高维的抽象特征。然而,随着网络层数增加,参数量也急剧增加,导致过拟合及计算量大增,解决这两个缺陷的根本办法是将全连接甚至一般的卷积转化为稀疏连接。为此,Google团队提出了Inception结构[5],以将稀疏矩阵聚类为较为密集的子矩阵来提高计算性能。以Inception结构构造的22层网络GoogLeNet,用均值池化代替后端的全连接层,使得参数量只有7M,极大增强了泛化能力,并增加了两个辅助的Softmax用于向前传导梯度,避免梯度消失。GoogLeNet在2014年的ILSVRC竞赛中以Top-5错误率仅6.66%的成绩摘得桂冠。
网络层数的增加并非永无止境。随着网络层数的增加,将导致训练误差增大等所谓退化问题。为此,微软提出了一种深度残差学习框架[6],利用多层网络拟合一个残差映射,成功构造出152层的ResNet-152,并在2015年的ILSVRC分类问题竞赛中取得Top-5错误率仅5.71%的成绩。随后,对现有的瓶颈式残差结构进行改进,提出了一种直通结构[7],并基于此搭建出惊人的1001层网络,在CIFAR-10分类错误率仅4.92%。至此,卷积神经网络在越来越“深”的道路上一往直前。
2可变形的卷积神经网络
2.1空间变换网络
空间变换网络(SpatialTransformerNetwork,STN)[8]主要由定位网络(Localisationnet)、网格生成器(Gridgenerator)和可微图像采样(DifferentiableImageSampling)3部分构成,如图1所示。
定位网络将输入的特征图U放入一个子网络(由卷积、全连接等构成的若干层子网络),生成空间变换参数θ。θ的形式可以多样,如需要实现2D仿射变换,那么θ就是一个2×3的向量。
2.3本文模型
本文以自建的3层卷积网络C3K5(如图6所示)和VGG-16作为基准网络,分别引入空间变换网络、可变形卷积和可变形池化,构造出8个卷积神经网络,用以验证可变形模块对浅层网络和深层网络的影响,如表1所示。
图6中C3K5网络模型包含3个带有ReLU层、LRN层和池化层的卷积模块,卷积层采用步长为1的5×5卷积核,输出保持原大小,池化层采用步长为2核为2×2的最大值池化,即每经过一个卷积模块,特征图缩小为原来的一半。
3实验与分析
3.1实验设置
本文实验环境:CPU为Inteli5-7400,8G内存,显卡为GTX1060,采用Cuda8+CuDNN6.0加速。
实验数据集包括公共图像数据集mnist、cifar-10、cifar-100和自建图像数据集pen-7。公共数据集分别有50000张训练样本图像和10000张测试样本图像。自建数据集pen-7为京东商城的七类笔图像库,每类有600张图片,图像分辨率为200×200,总计训练样本数3360,测试样本数840,图7为其中的14个样本。
3.2结果与分析
分别将表1中的10个卷积网络应用到mnist、cifar-10、cifar-100和pen-7四个数据集进行训练,batch-size设置100,即每次传入100张图片进行训练,每训练100次测试一次(记为一次迭代),总共迭代100次,取最后10次迭代的准确率计算平均值,得各网络应用在不同数据集的分类结果,如表2所示。
实验结果表明,在卷积网络中引入空间变换网络、用可变形的卷积层和可变形的池化层替换传统的卷积层和池化层,不管是在浅层网络还是在深层网络,都能获得更高的分类准确率,这验证了空间变换网络和可变形卷积(池化)结构,丰富了卷积神经网络的空间特征表达能力,提升了卷积网络对样本的空间多样性变化的鲁棒性。包含3种模块的网络获得了最高的分类精度,使空间变换网络、可变形卷积层和可变形池化层在更多应用场景中并驾齐驱成为可能。
4结语
通过在现有卷积神经网络中引入空间变换网络、可变形的卷积层和可变形的池化层,使得卷积网络在mnist、cifar-10、cifar-100及自建的pen-7数据集中获得了更高的分类精度,包含3种模块的网络获得了最高分类精度,证明了空间变换网络、可变形的卷积层和可变形池化层都能丰富网络的空间特征表达能力,协同应用于图像分类工作,这为后续研究打下了坚实的基础。
参考文献:
[1]BOUVRIEJ.Notesonconvolutionalneuralnetworks[J].NeuralNets,2006(1):159-164.
[2]YLECUN,LBOTTOU,YBENGIO,etal.Gradient-basedlearningappliedtodocumentrecognition[J].ProceedingsoftheIEEE,1998,86(11):2278-2324.
[3]KRIZHEVSKYA,SUTSKEVERI,HINTONGE.ImageNetclassificationwithdeepconvolutionalneuralnetworks[C].InternationalConferenceonNeuralInformationProcessingSystems.CurranAssociatesInc,2012:1097-1105.
[4]SIMONYANK,ZISSERMANA.Verydeepconvolutionalnetworksforlarge-scaleimagerecognition[J].ComputerScience,2014(6):1211-1220.
[5]SZEGEDYC,LIUW,JIAY,etal.Goingdeeperwithconvolutions[J].CVPR,2015(3):1-9.
[6]HEK,ZHANGX,RENS,etal.Deepresiduallearningforimagerecognition[C].ComputerVisionandPatternRecognition.IEEE,2015:770-778.
[7]HEK,ZHANGX,RENS,etal.Identitymappingsindeepresidualnetworks[J].arXiv,2016(1603):5-27.
[8]JADERBERGM,SIMONYANK,ZISSERMANA,etal.Spatialtransformernetworks[J].ComputerScience,2015(5):1041-1050.
[9]DAIJ,QIH,XIONGY,etal.Deformableconvolutionalnetworks[J].arXiv:2017(1703):62-111.
卷积神经网络的方法范文篇3
以上文章都结合卷积神经网络模型对交通标志分类做了大量的研究,避免了复杂的人工特征提取算法的设计,研究结果具有一定的参考性。在现有卷积神经网络模型的启发下,以上文章都采用分类器。而训练分类器需要大量样本,因而在小样本数据下,采用分类器容易造成过拟合,降低网络的泛化性。同时,由于SVM分类器在小样本数据集上具有出色分类性能,本文提出一种基于卷积神经网络和多类SVM分类器[[4]的交通标志识别模型。此模型利用卷积神经网络强大的特征提取和泛化能力,使得算法在复杂环境中依然具有可靠的识别结果。首先,本文通过迁移学习策略「51L61对AlexNet网络[7]特征提取部分进行微调,并将微调结果作为本文的特征提取器。然后将卷积神经网络提取的特征作为多类SVM分类器的输入。同时为了进一步防止过拟合现象的发生,本文在SVM分类器中加入dropout层,利用随机置零策略进行参数选择。最后,文章通过实验结果证实本文提出的分类模型相比于采用softmax分类器有更好的准确率、在复杂背景中具有较高的识别率和较强的鲁棒性棒。1卷积神经网络和SVM
1.1AlexNet网络
AlexNet网络是著名的卷积分类网络,可成功实现对1000类别物体的分类。其结构可以分为特征提取器和分类器两部分。
特征提取器主要由卷积层、池化层、激活函数组成。卷积层由大小不同的卷积核组成,卷积核类似于传统视觉中的特征提取算子。但区别于传统视觉算子,卷积核参数由网络自己学习得到,可以提取图像从底层到高层的不同特征信息。池化层常连接在卷积层之后,一般常用最大池化操作。池化层可以加强网络对平移变化的鲁棒性。激活函数为网络引入非线性因素,使得网络可以逼近任意函数形式。
分类层主要由全连接层和多类逻辑回归函数组成。全连接层学习用合理的方式组合特征,可以看为函数映射。逻辑回归函数进行类别概率判别,逻辑回归判别见公式。同时,为了防止全连接层过拟合,AlexNet网络引入dropout层,dropout[9]采用随机置零的方式,防止神经元以特定的方式组合工作,从而防止深度网络的过拟合。p}Y}}}=j1二(‘);B)=艺e醉x})丫‘eBTx}'}e'j代表类别,二(i)为输入,k代表类别总数,8,表示将样本x}')映射到j类的参数,B代表er,r=i,z,~…,,组成的矩阵,p(少‘)=j}x(仍表示x}'}属于j类的概率。1.2标准SVMSVM是基于结构风险最小化理论的有监督学习算法,通过寻找最优分割超平面来实现分类[}10}。相比于神经网络,SVM在小样本数据集上也能表现出良好的分类效果,因而得到广泛使用。标准的SVM通过寻求公式(2)的最优解来找到最优超分割平面。minw,b含,,w,,(2)yc(w·二(‘)+b)_1,i=1,2,……,m尹)代表第i个样本标签,x}'}代表第i个样本特,m为训练集大小。分类模型设计
本文提出的分类模型主要分为两部分,特征提取部分和多类SVM分类器。整体结构如图1所示。
图1中,特征提取器主要对输入图片进行特征提取和融合,最终得到图像的高阶特征并将提取到的信息特征送入多类SVM分类器。dropout层进行参数随机丢失步骤,此步骤通过随机失活神经元可有效防止过拟合的发生;然后结合不加正则化项的SVM算法进行分类,得到最终输出结果。
2.1特征提取器

夏姓女孩起名大全精选
- 阅4俗话说 ‚ 人如其名 ‚ 可见名字对一个人的重要性 ‚ 特别是对于女孩来说 ‚ 名字不仅能彰显自己的外在气质 ‚ 而且还能给自己的形象加分。 夏姓是一个纯汉族、源流单一的.....

2023年带安字的女孩名字大全‚安字
- 阅5“安”字由[宀、女]组成‚寓意着阖家欢乐‚幸福快乐等含意‚表述在女孩名字之中寓意着安全、清静、吉祥。 寓意非常美好‚当父母们在搜索一些寓意美好听的女孩名字时。 何不应用.....

2025电影霸王别姬的心得观后感精选
- 阅0《霸王别姬》电影里;男怕夜奔女怕思凡确有深意,不仅仅是一个梨园行的说法而已。下面是由小编为大家整理的;2022电影霸王别姬的心得观后感参考范文8篇,仅供参考,欢迎大家阅读。2.....

2025《见字如面》观后感精选范文
- 阅0作为国内首档也是全屏唯一一档明星读信节目,《见字如面》把中国从古至今的书信做了一次集中大扫描和大梳理。下面是由小编为大家整理的;2022《见字如面》观后感参考范文8篇,仅.....

扶贫资金使用情况汇报(收集3篇)
阅:0扶贫资金使用情况汇报范文篇12017年7月3日以来,xx镇纪委认真贯彻关于扶贫工作座谈会议讲话精神,以及中央、省....

卷积神经网络的方法(收集3篇)
阅:0卷积神经网络的方法范文篇1关键词:无人机;STM32;道路检测;神经网络;模型训练传统的道路巡检和保养主要由人工来完....

病案管理的要求(收集5篇)
阅:0病案管理的要求篇11疗养病案的科学管理是搞好开发利用的前提条件1)实行全程控制,提高疗养病案质量。各科医....